Email updates

Keep up to date with the latest news and content from BMC Microbiology and BioMed Central.

Open Access Highly Accessed Research article

Protective effect of probiotics on Salmonella infectivity assessed with combined in vitro gut fermentation-cellular models

Annina Zihler, Mélanie Gagnon, Christophe Chassard and Christophe Lacroix*

Author Affiliations

Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland

For all author emails, please log on.

BMC Microbiology 2011, 11:264  doi:10.1186/1471-2180-11-264

Published: 15 December 2011

Abstract

Background

Accurate assessment of probiotics with targeted anti-Salmonella activity requires suitable models accounting for both, microbe-microbe and host-microbe interactions in gut environments. Here we report the combination of two original in vitro intestinal models closely mimicking the complex in vivo conditions of the large intestine. Effluents from continuous in vitro three-stage fermentation colonic models of Salmonella Typhimurium infection inoculated with immobilized child microbiota and Salmonella were directly applied to confluent mucus-secreting HT29-MTX cell layers. The effects of Salmonella, addition of two bacteriocinogenic strains, Bifidobacterium thermophilum RBL67 (thermophilicin B67) and Escherichia coli L1000 (microcin B17), and inulin were tested on Salmonella growth and interactions with epithelial cell layers. Salmonella adhesion and invasion were investigated and epithelial integrity assessed by transepithelial electrical resistance (TER) measurements and confocal microscopy observation. Data from complex effluents were compared with pure Salmonella cultures.

Results

Salmonella in effluents of all reactors of the colonic fermentation model stabilized at mean values of 5.3 ± 0.8 log10 cfu/ml effluent. Invasion of cell-associated Salmonella was up to 50-fold lower in complex reactor samples compared to pure Salmonella cultures. It further depended on environmental factors, with 0.2 ± 0.1% being measured with proximal, 0.6 ± 0.2% with transverse and 1.3 ± 0.7% with distal reactor effluents, accompanied by a similar high decrease of TER across cell monolayers (minus 45%) and disruption of tight junctions. Subsequent addition of E. coli L1000 stimulated Salmonella growth (6.4 ± 0.6 log10 cfu/ml effluent of all 3 reactors) and further decreased TER, but led to 10-fold decreased invasion efficiency when tested with distal reactor samples. In contrast, presence of B. thermophilum RBL67 revealed a protective effect on epithelial integrity compared to previous E. coli L1000 periods, as reflected by a significant mean increase of TER by 58% in all reactors. Inulin addition enhanced Salmonella growth and invasion when tested with distal and proximal reactor samples, respectively, but induced a limited decrease of TER (minus 18%) in all reactors.

Conclusions

Our results highlight the benefits of combining suitable cellular and colonic fermentation models to assess strain-specific first-level host protection properties of probiotics during Salmonella infection, providing an efficient system biology tool for preclinical development of new antimicrobials.