Email updates

Keep up to date with the latest news and content from BMC Microbiology and BioMed Central.

Open Access Highly Accessed Research article

Common origin of plasmid encoded alpha-hemolysin genes in Escherichia coli

Ylanna Burgos and Lothar Beutin*

Author affiliations

National Reference Laboratory for E. coli, Federal Institute for Risk Assessment (BfR), D12277 Berlin, Germany

For all author emails, please log on.

Citation and License

BMC Microbiology 2010, 10:193  doi:10.1186/1471-2180-10-193

Published: 19 July 2010

Abstract

Background

Alpha (α)-hemolysin is a pore forming cytolysin and serves as a virulence factor in intestinal and extraintestinal pathogenic strains of E. coli. It was suggested that the genes encoding α-hemolysin (hlyCABD) which can be found on the chromosome and plasmid, were acquired through horizontal gene transfer. Plasmid-encoded α-hly is associated with certain enterotoxigenic (ETEC), shigatoxigenic (STEC) and enteropathogenic E. coli (EPEC) strains. In uropathogenic E. coli (UPEC), the α-hly genes are located on chromosomal pathogenicity islands. Previous work suggested that plasmid and chromosomally encoded α-hly may have evolved independently. This was explored in our study.

Results

We have investigated 11 α-hly plasmids from animal and human ETEC, STEC and EPEC strains. The size of α-hly plasmids ranges from 48-157 kb and eight plasmids are conjugative. The regulatory gene (hlyR) located upstream of the hlyCABD gene operon and an IS911 element located downstream of hlyD are conserved. Chromosomally-encoded α-hly operons lack the hlyR and IS911 elements. The DNA sequence of hlyC and hlyA divided the plasmid- and chromosomally-encoded α-hemolysins into two clusters. The plasmid-encoded α-hly genes could be further divided into three groups based on the insertion of IS1 and IS2 in the regulatory region upstream of the α-hly operon. Transcription of the hlyA gene was higher than the housekeeping icdA gene in all strains (rq 4.8 to 143.2). Nucleotide sequence analysis of a chromosomally located α-hly determinant in Enterobacter cloacae strain indicates that it originates from an E. coli α-hly plasmid.

Conclusion

Our data indicate that plasmids encoding α-hly in E. coli descended from a common ancestor independent of the plasmid size and the origin of the strains. Conjugative plasmids could contribute to the spread of the α-hly determinant to Enterobacter cloacae. The presence of IS-elements flanking the plasmid-encoded α-hly indicate that they might be mobile genetic elements.