Email updates

Keep up to date with the latest news and content from BMC Microbiology and BioMed Central.

Open Access Research article

Azithromycin effectiveness against intracellular infections of Francisella

Saira Ahmad1, Lyman Hunter2, Aiping Qin3, Barbara J Mann3 and Monique L van Hoek1*

Author Affiliations

1 Department of Molecular and Microbiology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20120, USA

2 Inova Fairfax Hospital, Falls Church, VA 22042, USA

3 Departments of Medicine & Microbiology, University of Virginia Health Systems, Charlottesville, VA 22908, USA

For all author emails, please log on.

BMC Microbiology 2010, 10:123  doi:10.1186/1471-2180-10-123

Published: 23 April 2010

Abstract

Background

Macrolide antibiotics are commonly administered for bacterial respiratory illnesses. Azithromycin (Az) is especially noted for extremely high intracellular concentrations achieved within macrophages which is far greater than the serum concentration. Clinical strains of Type B Francisella (F.) tularensis have been reported to be resistant to Az, however our laboratory Francisella strains were found to be sensitive. We hypothesized that different strains/species of Francisella (including Type A) may have different susceptibilities to Az, a widely used and well-tolerated antibiotic.

Results

In vitro susceptibility testing of Az confirmed that F. tularensis subsp. holarctica Live Vaccine Strain (LVS) (Type B) was not sensitive while F. philomiragia, F. novicida, and Type A F. tularensis (NIH B38 and Schu S4 strain) were susceptible. In J774A.1 mouse macrophage cells infected with F. philomiragia, F. novicida, and F. tularensis LVS, 5 μg/ml Az applied extracellularly eliminated intracellular Francisella infections. A concentration of 25 μg/ml Az was required for Francisella-infected A549 human lung epithelial cells, suggesting that macrophages are more effective at concentrating Az than epithelial cells. Mutants of RND efflux components (tolC and ftlC) in F. novicida demonstrated less sensitivity to Az by MIC than the parental strain, but the tolC disc-inhibition assay demonstrated increased sensitivity, indicating a complex role for the outer-membrane transporter. Mutants of acrA and acrB mutants were less sensitive to Az than the parental strain, suggesting that AcrAB is not critical for the efflux of Az in F. novicida. In contrast, F. tularensis Schu S4 mutants ΔacrB and ΔacrA were more sensitive than the parental strain, indicating that the AcrAB may be important for Az efflux in F. tularensis Schu S4. F. novicida LPS O-antigen mutants (wbtN, wbtE, wbtQ and wbtA) were found to be less sensitive in vitro to Az compared to the wild-type. Az treatment prolonged the survival of Galleria (G.) mellonella infected with Francisella.

Conclusion

These studies demonstrate that Type A Francisella strains, as well as F. novicida and F. philomiragia, are sensitive to Az in vitro. Francisella LPS and the RND efflux pump may play a role in Az sensitivity. Az also has antimicrobial activity against intracellular Francisella, suggesting that the intracellular concentration of Az is high enough to be effective against multiple strains/species of Francisella, especially in macrophages. Az treatment prolonged survival an in vivo model of Francisella-infection.