Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

Open Access Research article

Transcriptional profiling of mesenchymal stromal cells from young and old rats in response to Dexamethasone

Uri David Akavia, Irena Shur, Gideon Rechavi and Dafna Benayahu*

Author Affiliations

Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

For all author emails, please log on.

BMC Genomics 2006, 7:95  doi:10.1186/1471-2164-7-95

Published: 27 April 2006

Abstract

Background

Marrow-derived stromal cells (MSCs) maintain the capability of self-renewal and differentiation into multiple lineages in adult life. Age-related changes are recognized by a decline in the stemness potential that result in reduced regeneration potential of the skeleton. To explore the molecular events that underline skeletal physiology during aging we catalogued the profile of gene expression in ex vivo cultured MSCs derived from 3 and 15 month old rats. The ex vivo cultured cells were analyzed following challenge with or without Dexamethasone (Dex). RNA retrieved from these cells was analyzed using Affymetrix Gene Chips to compare the effect of Dex on gene expression in both age groups.

Results

The molecular mechanisms that underline skeletal senescence were studied by gene expression analysis of RNA harvested from MSCs. The analysis resulted in complex profiles of gene expression of various differentiation pathways. We revealed changes of lineage-specific gene expression; in general the pattern of expression included repression of proliferation and induction of differentiation. The functional analysis of genes clustered were related to major pathways; an increase in bone remodeling, osteogenesis and muscle formation, coupled with a decrease in adipogenesis. We demonstrated a Dex-related decrease in immune response and in genes that regulate bone resorption and an increase in osteoblastic differentiation. Myogenic-related genes and genes that regulate cell cycle were induced by Dex. While Dex repressed genes related to adipogenesis and catabolism, this decrease was complementary to an increase in expression of genes related to osteogenesis.

Conclusion

This study summarizes the genes expressed in the ex vivo cultured mesenchymal cells and their response to Dex. Functional clustering highlights the complexity of gene expression in MSCs and will advance the understanding of major pathways that trigger the natural changes underlining physiological aging. The high throughput analysis shed light on the anabolic effect of Dex and the relationship between osteogenesis, myogenesis and adipogenesis in the bone marrow cells.