Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

Open Access Database

SFGD: a comprehensive platform for mining functional information from soybean transcriptome data and its use in identifying acyl-lipid metabolism pathways

Juan Yu, Zhenhai Zhang, Jiangang Wei, Yi Ling, Wenying Xu* and Zhen Su*

Author Affiliations

State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China

For all author emails, please log on.

BMC Genomics 2014, 15:271  doi:10.1186/1471-2164-15-271

Published: 8 April 2014

Abstract

Background

Soybean (Glycine max L.) is one of the world’s most important leguminous crops producing high-quality protein and oil. Increasing the relative oil concentration in soybean seeds is many researchers’ goal, but a complete analysis platform of functional annotation for the genes involved in the soybean acyl-lipid pathway is still lacking. Following the success of soybean whole-genome sequencing, functional annotation has become a major challenge for the scientific community. Whole-genome transcriptome analysis is a powerful way to predict genes with biological functions. It is essential to build a comprehensive analysis platform for integrating soybean whole-genome sequencing data, the available transcriptome data and protein information. This platform could also be used to identify acyl-lipid metabolism pathways.

Description

In this study, we describe our construction of the Soybean Functional Genomics Database (SFGD) using Generic Genome Browser (Gbrowse) as the core platform. We integrated microarray expression profiling with 255 samples from 14 groups’ experiments and mRNA-seq data with 30 samples from four groups’ experiments, including spatial and temporal transcriptome data for different soybean development stages and environmental stresses. The SFGD includes a gene co-expression regulatory network containing 23,267 genes and 1873 miRNA-target pairs, and a group of acyl-lipid pathways containing 221 enzymes and more than 1550 genes. The SFGD also provides some key analysis tools, i.e. BLAST search, expression pattern search and cis-element significance analysis, as well as gene ontology information search and single nucleotide polymorphism display.

Conclusion

The SFGD is a comprehensive database integrating genome and transcriptome data, and also for soybean acyl-lipid metabolism pathways. It provides useful toolboxes for biologists to improve the accuracy and robustness of soybean functional genomics analysis, further improving understanding of gene regulatory networks for effective crop improvement. The SFGD is publically accessible at http://bioinformatics.cau.edu.cn/SFGD/ webcite, with all data available for downloading.