Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

Open Access Open Badges Research article

Transcriptome-wide comparison of sequence variation in divergent ecotypes of kokanee salmon

Matthew A Lemay*, David J Donnelly and Michael A Russello

Author Affiliations

Department of Biology, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna BC, V1V 1V7, Canada

For all author emails, please log on.

BMC Genomics 2013, 14:308  doi:10.1186/1471-2164-14-308

Published: 7 May 2013



High throughput next-generation sequencing technology has enabled the collection of genome-wide sequence data and revolutionized single nucleotide polymorphism (SNP) discovery in a broad range of species. When analyzed within a population genomics framework, SNP-based genotypic data may be used to investigate questions of evolutionary, ecological, and conservation significance in natural populations of non-model organisms. Kokanee salmon are recently diverged freshwater populations of sockeye salmon (Oncorhynchus nerka) that exhibit reproductive ecotypes (stream-spawning and shore-spawning) in lakes throughout western North America and northeast Asia. Current conservation and management strategies may treat these ecotypes as discrete stocks, however their recent divergence and low levels of gene flow make in-season genetic stock identification a challenge. The development of genome-wide SNP markers is an essential step towards fine-scale stock identification, and may enable a direct investigation of the genetic basis of ecotype divergence.


We used pooled cDNA samples from both ecotypes of kokanee to generate 750 million base pairs of transcriptome sequence data. These raw data were assembled into 11,074 high coverage contigs from which we identified 32,699 novel single nucleotide polymorphisms. A subset of these putative SNPs was validated using high-resolution melt analysis and Sanger resequencing to genotype independent samples of kokanee and anadromous sockeye salmon. We also identified a number of contigs that were composed entirely of reads from a single ecotype, which may indicate regions of differential gene expression between the two reproductive ecotypes. In addition, we found some evidence for greater pathogen load among the kokanee sampled in stream-spawning habitats, suggesting a possible evolutionary advantage to shore-spawning that warrants further study.


This study provides novel genomic resources to support population genetic and genomic studies of both kokanee and anadromous sockeye salmon, and has the potential to produce markers capable of fine-scale stock assessment. While this RNAseq approach was successful at identifying a large number of new SNP loci, we found that the frequency of alleles present in the pooled transcriptome data was not an accurate predictor of population allele frequencies.

Adaptation; High resolution melt analysis; Next-generation sequencing; Oncorhynchus nerka; Single nucleotide polymorphisms