Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

Open Access Research article

Characterization of expressed sequence tags from developing fibers of Gossypium barbadense and evaluation of insertion-deletion variation in tetraploid cultivated cotton species

Yuanda Lv, Liang Zhao, Xiaoyang Xu, Lei Wang, Cheng Wang, Tianzhen Zhang and Wangzhen Guo*

Author affiliations

National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing, 210095, China

For all author emails, please log on.

Citation and License

BMC Genomics 2013, 14:170  doi:10.1186/1471-2164-14-170

Published: 13 March 2013

Abstract

Background

Cotton is the leading fiber crop worldwide. Gossypium barbadense is an important species of cotton because of its extra-long staple fibers with superior luster and silkiness. However, a systematic analysis and utilization of cDNA sequences from G. barbadense fiber development remains understudied.

Results

A total of 21,079 high quality sequences were generated from two non-normalized cDNA libraries prepared by using a mixture of G. barbadense Hai7124 fibers and ovules. After assembly processing, a set of 8,653 unigenes were obtained. Of those, 7,786 were matched to known proteins and 7,316 were assigned to functional categories. The molecular functions of these unigenes were mostly related to binding and catalytic activity, and carbohydrate, amino acid, and energy metabolisms were major contributors among the subsets of metabolism. Sequences comparison between G. barbadense and G. hirsutum revealed that 8,245 unigenes from G. barbadense were detected the similarity with those released publicly in G. hirsutum, however, the remaining 408 sequences had no hits against G. hirsutum unigenes database. Furthermore, 13,275 putative ESTs InDels loci involved in the orthologous and/or homoeologous differences between/within G. barbadense and G. hirsutum were discovered by in silico analyses, and 2,160 InDel markers were developed by ESTs with more than five insertions or deletions. By gel electrophoresis combined with sequencing verification, 71.11% candidate InDel loci were reconfirmed orthologous and/or homoeologous loci polymorphisms using G. hirsutum acc TM-1 and G. barbadense cv Hai7124. Blastx result showed among 2,160 InDel loci, 81 with significant function similarity with known genes associated with secondary wall synthesis process, indicating the important roles in fiber quality in tetraploid cultivated cotton species.

Conclusion

Sequence comparisons and InDel markers development will lay the groundwork for promoting the identification of genes related to superior agronomic traits, genetic differentiation and comparative genomic studies between G. hirsutum and G. barbadense.