Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

This article is part of the supplement: Tenth International Conference on Bioinformatics. First ISCB Asia Joint Conference 2011 (InCoB/ISCB-Asia 2011): Computational Biology

Open Access Proceedings

Interrogation of alternative splicing events in duplicated genes during evolution

Ting-Wen Chen12, Timothy H Wu1, Wailap V Ng1 and Wen-Chang Lin12*

Author Affiliations

1 Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan

2 Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

For all author emails, please log on.

BMC Genomics 2011, 12(Suppl 3):S16  doi:10.1186/1471-2164-12-S3-S16

Published: 30 November 2011

Abstract

Background

Gene duplication provides resources for developing novel genes and new functions while retaining the original functions. In addition, alternative splicing could increase the complexity of expression at the transcriptome and proteome level without increasing the number of gene copy in the genome. Duplication and alternative splicing are thought to work together to provide the diverse functions or expression patterns for eukaryotes. Previously, it was believed that duplication and alternative splicing were negatively correlated and probably interchangeable.

Results

We look into the relationship between occurrence of alternative splicing and duplication at different time after duplication events. We found duplication and alternative splicing were indeed inversely correlated if only recently duplicated genes were considered, but they became positively correlated when we took those ancient duplications into account. Specifically, for slightly or moderately duplicated genes with gene families containing 2 - 7 paralogs, genes were more likely to evolve alternative splicing and had on average a greater number of alternative splicing isoforms after long-term evolution compared to singleton genes. On the other hand, those large gene families (contain at least 8 paralogs) had a lower proportion of alternative splicing, and fewer alternative splicing isoforms on average even when ancient duplicated genes were taken into consideration. We also found these duplicated genes having alternative splicing were under tighter evolutionary constraints compared to those having no alternative splicing, and had an enrichment of genes that participate in molecular transducer activities.

Conclusions

We studied the association between occurrences of alternative splicing and gene duplication. Our results implicate that there are key differences in functions and evolutionary constraints among singleton genes or duplicated genes with or without alternative splicing incidences. It implies that the gene duplication and alternative splicing may have different functional significance in the evolution of speciation diversity.