Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

Open Access Research article

Eukaryote DIRS1-like retrotransposons: an overview

Mathieu Piednoël*, Isabelle R Gonçalves, Dominique Higuet and Eric Bonnivard

Author Affiliations

UMR 7138 Systématique Adaptation Evolution, Equipe Génétique et Evolution, Université Pierre et Marie Curie Paris 6, Case 5, Bâtiment A, porte 427, 7 quai St Bernard, 75252 Paris Cedex 05, France

For all author emails, please log on.

BMC Genomics 2011, 12:621  doi:10.1186/1471-2164-12-621

Published: 20 December 2011

Abstract

Background

DIRS1-like elements compose one superfamily of tyrosine recombinase-encoding retrotransposons. They have been previously reported in only a few diverse eukaryote species, describing a patchy distribution, and little is known about their origin and dynamics. Recently, we have shown that these retrotransposons are common among decapods, which calls into question the distribution of DIRS1-like retrotransposons among eukaryotes.

Results

To determine the distribution of DIRS1-like retrotransposons, we developed a new computational tool, ReDoSt, which allows us to identify well-conserved DIRS1-like elements. By screening 274 completely sequenced genomes, we identified more than 4000 DIRS1-like copies distributed among 30 diverse species which can be clustered into roughly 300 families. While the diversity in most species appears restricted to a low copy number, a few bursts of transposition are strongly suggested in certain species, such as Danio rerio and Saccoglossus kowalevskii.

Conclusion

In this study, we report 14 new species and 8 new higher taxa that were not previously known to harbor DIRS1-like retrotransposons. Now reported in 61 species, these elements appear widely distributed among eukaryotes, even if they remain undetected in streptophytes and mammals. Especially in unikonts, a broad range of taxa from Cnidaria to Sauropsida harbors such elements. Both the distribution and the similarities between the DIRS1-like element phylogeny and conventional phylogenies of the host species suggest that DIRS1-like retrotransposons emerged early during the radiation of eukaryotes.