Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

Open Access Database

SHV Lactamase Engineering Database: a reconciliation tool for SHV β-lactamases in public databases

Quan K Thai and Juergen Pleiss*

Author Affiliations

Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany

For all author emails, please log on.

BMC Genomics 2010, 11:563  doi:10.1186/1471-2164-11-563

Published: 13 October 2010

Abstract

Background

SHV β-lactamases confer resistance to a broad range of antibiotics by accumulating mutations. The number of SHV variants is steadily increasing. 117 SHV variants have been assigned in the SHV mutation table (http://www.lahey.org/Studies/ webcite). Besides, information about SHV β-lactamases can be found in the rapidly growing NCBI protein database. The SHV β-Lactamase Engineering Database (SHVED) has been developed to collect the SHV β-lactamase sequences from the NCBI protein database and the SHV mutation table. It serves as a tool for the detection and reconciliation of inconsistencies, and for the identification of new SHV variants and amino acid substitutions.

Description

The SHVED contains 200 protein entries with distinct sequences and 20 crystal structures. 83 protein sequences are included in the both the SHV mutation table and the NCBI protein database, while 35 and 82 protein sequences are only in the SHV mutation table and the NCBI protein database, respectively. Of these 82 sequences, 41 originate from microbial sources, and 22 of them are full-length sequences that harbour a mutation profile which has not been classified yet in the SHV mutation table. 27 protein entries from the NCBI protein database were found to have an inconsistency in SHV name identification. These inconsistencies were reconciled using information from the SHV mutation table and stored in the SHVED.

The SHVED is accessible at http://www.LacED.uni-stuttgart.de/classA/SHVED/ webcite. It provides sequences, structures, and a multisequence alignment of SHV β-lactamases with the corrected annotation. Amino acid substitutions at each position are also provided. The SHVED is updated monthly and supplies all data for download.

Conclusions

The SHV β-Lactamase Engineering Database (SHVED) contains information about SHV variants with reconciled annotation. It serves as a tool for detection of inconsistencies in the NCBI protein database, helps to identify new mutations resulting in new SHV variants, and thus supports the investigation of sequence-function relationships of SHV β-lactamases.