Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

Open Access Research article

Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata

Jennifer H Wisecaver and Jeremiah D Hackett*

Author Affiliations

Department of Ecology and Evolutionary Biology, University of Arizona, P.O. Box 210088, Tucson, AZ 85721, USA

For all author emails, please log on.

BMC Genomics 2010, 11:366  doi:10.1186/1471-2164-11-366

Published: 10 June 2010

Abstract

Background

Dinophysis is exceptional among dinoflagellates, possessing plastids derived from cryptophyte algae. Although Dinophysis can be maintained in pure culture for several months, the genus is mixotrophic and needs to feed either to acquire plastids (a process known as kleptoplastidy) or obtain growth factors necessary for plastid maintenance. Dinophysis does not feed directly on cryptophyte algae, but rather on a ciliate (Myrionecta rubra) that has consumed the cryptophytes and retained their plastids. Despite the apparent absence of cryptophyte nuclear genes required for plastid function, Dinophysis can retain cryptophyte plastids for months without feeding.

Results

To determine if this dinoflagellate has nuclear-encoded genes for plastid function, we sequenced cDNA from Dinophysis acuminata, its ciliate prey M. rubra, and the cryptophyte source of the plastid Geminigera cryophila. We identified five proteins complete with plastid-targeting peptides encoded in the nuclear genome of D. acuminata that function in photosystem stabilization and metabolite transport. Phylogenetic analyses show that the genes are derived from multiple algal sources indicating some were acquired through horizontal gene transfer.

Conclusions

These findings suggest that D. acuminata has some functional control of its plastid, and may be able to extend the useful life of the plastid by replacing damaged transporters and protecting components of the photosystem from stress. However, the dearth of plastid-related genes compared to other fully phototrophic algae suggests that D. acuminata does not have the nuclear repertoire necessary to maintain the plastid permanently.