Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

This article is part of the supplement: Proceedings of the Avian Genomics Conference and Gene Ontology Annotation Workshop

Open Access Proceedings

A bacterial artificial chromosome library for the Australian saltwater crocodile (Crocodylus porosus) and its utilization in gene isolation and genome characterization

Xueyan Shan1, David A Ray2, John A Bunge3 and Daniel G Peterson14*

Author Affiliations

1 Mississippi Genome Exploration Laboratory (MGEL), Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, USA

2 Department of Biology, West Virginia University, Morgantown, WV, USA

3 Department of Statistical Science, Cornell University, Ithaca, NY, USA

4 Life Sciences & Biotechnology Institute; Institute for Digital Biology, Mississippi State University, Mississippi State, MS, USA

For all author emails, please log on.

BMC Genomics 2009, 10(Suppl 2):S9  doi:10.1186/1471-2164-10-S2-S9

Published: 14 July 2009

Abstract

Background

Crocodilians (Order Crocodylia) are an ancient vertebrate group of tremendous ecological, social, and evolutionary importance. They are the only extant reptilian members of Archosauria, a monophyletic group that also includes birds, dinosaurs, and pterosaurs. Consequently, crocodilian genomes represent a gateway through which the molecular evolution of avian lineages can be explored. To facilitate comparative genomics within Crocodylia and between crocodilians and other archosaurs, we have constructed a bacterial artificial chromosome (BAC) library for the Australian saltwater crocodile, Crocodylus porosus. This is the first BAC library for a crocodile and only the second BAC resource for a crocodilian.

Results

The C. porosus BAC library consists of 101,760 individually archived clones stored in 384-well microtiter plates. NotI digestion of random clones indicates an average insert size of 102 kb. Based on a genome size estimate of 2778 Mb, the library affords 3.7 fold (3.7×) coverage of the C. porosus genome. To investigate the utility of the library in studying sequence distribution, probes derived from CR1a and CR1b, two crocodilian CR1-like retrotransposon subfamilies, were hybridized to C. porosus macroarrays. The results indicate that there are a minimum of 20,000 CR1a/b elements in C. porosus and that their distribution throughout the genome is decidedly non-random. To demonstrate the utility of the library in gene isolation, we probed the C. porosus macroarrays with an overgo designed from a C-mos (oocyte maturation factor) partial cDNA. A BAC containing C-mos was identified and the C-mos locus was sequenced. Nucleotide and amino acid sequence alignment of the C. porosus C-mos coding sequence with avian and reptilian C-mos orthologs reveals greater sequence similarity between C. porosus and birds (specifically chicken and zebra finch) than between C. porosus and squamates (green anole).

Conclusion

We have demonstrated the utility of the Crocodylus porosus BAC library as a tool in genomics research. The BAC library should expedite complete genome sequencing of C. porosus and facilitate detailed analysis of genome evolution within Crocodylia and between crocodilians and diverse amniote lineages including birds, mammals, and other non-avian reptiles.