Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

Open Access Highly Accessed Research article

What can you do with 0.1× genome coverage? A case study based on a genome survey of the scuttle fly Megaselia scalaris (Phoridae)

David A Rasmussen and Mohamed AF Noor*

Author Affiliations

Department of Biology, Duke University, Durham, NC 27708 USA

For all author emails, please log on.

BMC Genomics 2009, 10:382  doi:10.1186/1471-2164-10-382

Published: 18 August 2009

Abstract

Background

The declining cost of DNA sequencing is making genome sequencing a feasible option for more organisms, including many of interest to ecologists and evolutionary biologists. While obtaining high-depth, completely assembled genome sequences for most non-model organisms remains challenging, low-coverage genome survey sequences (GSS) can provide a wealth of biologically useful information at low cost. Here, using a random pyrosequencing approach, we sequence the genome of the scuttle fly Megaselia scalaris and evaluate the utility of our low-coverage GSS approach.

Results

Random pyrosequencing of the M. scalaris genome provided a depth of coverage (0.05x-0.1x) much lower than typical GSS studies. We demonstrate that, even with extremely low-coverage sequencing, bioinformatics approaches can yield extensive information about functional and repetitive elements. We also use our GSS data to develop genomic resources such as a nearly complete mitochondrial genome sequence and microsatellite markers for M. scalaris.

Conclusion

We conclude that low-coverage genome surveys are effective at generating useful information about organisms currently lacking genomic sequence data.