Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

Open Access Research article

Genome wide signatures of positive selection: The comparison of independent samples and the identification of regions associated to traits

William Barendse1*, Blair E Harrison1, Rowan J Bunch1, Merle B Thomas1 and Lex B Turner2

Author Affiliations

1 Commonwealth Scientific and Industrial Research Organization, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, 4067, Queensland, Australia

2 Queensland Department of Primary Industries and Fisheries, Mutdapilly Research Station, MS 825 Peak Crossing, 4306, Queensland, Australia

For all author emails, please log on.

BMC Genomics 2009, 10:178  doi:10.1186/1471-2164-10-178

Published: 24 April 2009

Abstract

Background

The goal of genome wide analyses of polymorphisms is to achieve a better understanding of the link between genotype and phenotype. Part of that goal is to understand the selective forces that have operated on a population.

Results

In this study we compared the signals of selection, identified through population divergence in the Bovine HapMap project, to those found in an independent sample of cattle from Australia. Evidence for population differentiation across the genome, as measured by FST, was highly correlated in the two data sets. Nevertheless, 40% of the variance in FST between the two studies was attributed to the differences in breed composition. Seventy six percent of the variance in FST was attributed to differences in SNP composition and density when the same breeds were compared. The difference between FST of adjacent loci increased rapidly with the increase in distance between SNP, reaching an asymptote after 20 kb. Using 129 SNP that have highly divergent FST values in both data sets, we identified 12 regions that had additive effects on the traits residual feed intake, beef yield or intramuscular fatness measured in the Australian sample. Four of these regions had effects on more than one trait. One of these regions includes the R3HDM1 gene, which is under selection in European humans.

Conclusion

Firstly, many different populations will be necessary for a full description of selective signatures across the genome, not just a small set of highly divergent populations. Secondly, it is necessary to use the same SNP when comparing the signatures of selection from one study to another. Thirdly, useful signatures of selection can be obtained where many of the groups have only minor genetic differences and may not be clearly separated in a principal component analysis. Fourthly, combining analyses of genome wide selection signatures and genome wide associations to traits helps to define the trait under selection or the population group in which the QTL is likely to be segregating. Finally, the FST difference between adjacent loci suggests that 150,000 evenly spaced SNP will be required to study selective signatures in all parts of the bovine genome.