Email updates

Keep up to date with the latest news and content from BMC Genetics and BioMed Central.

Open Access Research article

Human population structure detection via multilocus genotype clustering

Xiaoyi Gao1* and Joshua Starmer2

Author Affiliations

1 Miami Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA

2 Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

For all author emails, please log on.

BMC Genetics 2007, 8:34  doi:10.1186/1471-2156-8-34

Published: 25 June 2007

Abstract

Background

We describe a hierarchical clustering algorithm for using Single Nucleotide Polymorphism (SNP) genetic data to assign individuals to populations. The method does not assume Hardy-Weinberg equilibrium and linkage equilibrium among loci in sample population individuals.

Results

We show that the algorithm can assign sample individuals highly accurately to their corresponding ethnic groups in our tests using HapMap SNP data and it is also robust to admixed populations when tested with Perlegen SNP data. Moreover, it can detect fine-scale population structure as subtle as that between Chinese and Japanese by using genome-wide high-diversity SNP loci.

Conclusion

The algorithm provides an alternative approach to the popular STRUCTURE program, especially for fine-scale population structure detection in genome-wide association studies. This is the first successful separation of Chinese and Japanese samples using random SNP loci with high statistical support.