Email updates

Keep up to date with the latest news and content from BMC Genetics and BioMed Central.

Open Access Research article

Linkage analysis of longitudinal data and design consideration

Heping Zhang1* and Xiaoyun Zhong2

Author Affiliations

1 Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College Street, New Haven, CT 06520-8034, USA

2 Department of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA

For all author emails, please log on.

BMC Genetics 2006, 7:37  doi:10.1186/1471-2156-7-37

Published: 12 June 2006



Statistical methods have been proposed recently to analyze longitudinal data in genetic studies. So far, little attention has been paid to examine the relationship among key factors in genetic longitudinal studies including power, the number of families or sibships, and the number of repeated measures per individual subjects.


We proposed a variance component model that extends classic variance component models for a single quantitative trait to mapping longitudinal traits. Our model includes covariate effects and allows genetic effects to vary over time. Using our proposed model, we examined the power, pedigree structures, and sample size through simulation experiments.


Our simulation results provide useful insights into the study design for genetic, longitudinal studies. For example, collecting a small number of large sibships is much more powerful than collecting a large number of small sibships or increasing the number of repeated measures, when the total number of measurements is comparable.