Email updates

Keep up to date with the latest news and content from BMC Genetics and BioMed Central.

This article is part of the supplement: Genetic Analysis Workshop 14: Microsatellite and single-nucleotide polymorphism

Open Access Proceedings

Which strategy is better for linkage analysis: single-nucleotide polymorphisms or microsatellites? Evaluation by identity-by-state – identity-by-descent transformation affected sib-pair method on GAW14 data

Qingqi Yue12*, Victor Apprey12 and George E Bonney123

Author Affiliations

1 National Human Genome Center, Howard University, Washington, DC 20059, USA

2 Department of Community Health and Family Medicine, Howard University, Washington, DC 20059, USA

3 Division of Medical Genetics, Department of Pediatrics, Howard University, Washington, DC 20059, USA

For all author emails, please log on.

BMC Genetics 2005, 6(Suppl 1):S16  doi:10.1186/1471-2156-6-S1-S16

Published: 30 December 2005


The central issue for Genetic Analysis Workshop 14 (GAW14) is the question, which is the better strategy for linkage analysis, the use of single-nucleotide polymorphisms (SNPs) or microsatellite markers? To answer this question we analyzed the simulated data using Duffy's SIB-PAIR program, which can incorporate parental genotypes, and our identity-by-state – identity-by-descent (IBS-IBD) transformation method of affected sib-pair linkage analysis which uses the matrix transformation between IBS and IBD. The advantages of our method are as follows: the assumption of Hardy-Weinberg equilibrium is not necessary; the parental genotype information maybe all unknown; both IBS and its related IBD transformation can be used in the linkage analysis; the determinant of the IBS-IBD transformation matrix provides a quantitative measure of the quality of the marker in linkage analysis. With the originally distributed simulated data, we found that 1) for microsatellite markers there are virtually no differences in types I and II error rates when parental genotypes were or were not used; 2) on average, a microsatellite marker has more power than a SNP marker does in linkage detection; 3) if parental genotype information is used, SNP markers show lower type I error rates than microsatellite markers; and 4) if parental genotypes are not available, SNP markers show considerable variation in type I error rates for different methods.