Email updates

Keep up to date with the latest news and content from BMC Genetics and BioMed Central.

Open Access Research article

Chromosomal painting and ZW sex chromosomes differentiation in Characidium (Characiformes, Crenuchidae)

Tatiana C Machado1, José C Pansonato-Alves2, Marcela B Pucci1, Viviane Nogaroto1, Mara C Almeida1, Claudio Oliveira2, Fausto Foresti2, Luiz AC Bertollo3, Orlando Moreira-Filho3, Roberto F Artoni1 and Marcelo R Vicari1*

Author affiliations

1 Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa-PR, 84030-900, Brazil

2 Departamento de Morfologia, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu-SP, 18618-970, Brazil

3 Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís Km 235, São Carlos-SP, 13565-905, Brazil

For all author emails, please log on.

Citation and License

BMC Genetics 2011, 12:65  doi:10.1186/1471-2156-12-65

Published: 25 July 2011

Abstract

Background

The Characidium (a Neotropical fish group) have a conserved diploid number (2n = 50), but show remarkable differences among species and populations in relation to sex chromosome systems and location of nucleolus organizer regions (NOR). In this study, we isolated a W-specific probe for the Characidium and characterized six Characidium species/populations using cytogenetic procedures. We analyzed the origin and differentiation of sex and NOR-bearing chromosomes by chromosome painting in populations of Characidium to reveal their evolution, phylogeny, and biogeography.

Results

A W-specific probe for efficient chromosome painting was isolated by microdissection and degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR) amplification of W chromosomes from C. gomesi. The W probe generated weak signals dispersed on the proto sex chromosomes in C. zebra, dispersed signals in both W and Z chromosomes in C. lauroi and, in C. gomesi populations revealed a proximal site on the long arms of the Z chromosome and the entire W chromosome. All populations showed small terminal W probe sites in some autosomes. The 18S rDNA revealed distinctive patterns for each analyzed species/population with regard to proto sex chromosome, sex chromosome pair, and autosome location.

Conclusions

The results from dual-color fluorescence in situ hybridization (dual-color FISH) using W and 18S rDNA probes allowed us to infer the putative evolutionary pathways for the differentiation of sex chromosomes and NORs, from structural rearrangements in a sex proto-chromosome, followed by gene erosion and heterochromatin amplification, morphological differentiation of the sex chromosomal pair, and NOR transposition, giving rise to the distinctive patterns observed among species/populations of Characidium. Biogeographic isolation and differentiation of sex chromosomes seem to have played a major role in the speciation process in this group of fish.