Email updates

Keep up to date with the latest news and content from BMC Genetics and BioMed Central.

Open Access Research article

Identification of a two-marker-haplotype on Bos taurus autosome 18 associated with somatic cell score in German Holstein cattle

Bodo Brand1, Christine Baes2, Manfred Mayer2, Norbert Reinsch2 and Christa Kühn1*

Author Affiliations

1 Research Unit Molecular Biology, Research Institute for the Biology of Farm Animals, 18196 Dummerstorf, Germany

2 Research Unit Genetics and Biometry, Research Institute for the Biology of Farm Animals, 18196 Dummerstorf, Germany

For all author emails, please log on.

BMC Genetics 2009, 10:50  doi:10.1186/1471-2156-10-50

Published: 2 September 2009

Abstract

Background

The somatic cell score (SCS) is implemented in routine sire evaluations in many countries as an indicator trait for udder health. Somatic cell score is highly correlated with clinical mastitis, and in the German Holstein population quantitative trait loci (QTL) for SCS have been repeatedly mapped on Bos taurus autosome 18 (BTA18). In the present study, we report a refined analysis of previously detected QTL regions on BTA18 with the aim of identifying marker and marker haplotypes in linkage disequilibrium with SCS. A combined linkage and linkage disequilibrium approach was implemented, and association analyses of marker genotypes and maternally inherited two-marker-haplotypes were conducted to identify marker and haplotypes in linkage disequilibrium with a locus affecting SCS in the German Holstein population.

Results

We detected a genome-wide significant QTL within marker interval 9 (HAMP_c.366+109G>A - BMS833) in the middle to telomeric region on BTA18 and a second putative QTL in marker interval 12-13 (BB710 - PVRL2_c.392G>A). Association analyses with genotypes of markers flanking the most likely QTL positions revealed the microsatellite marker BMS833 (interval 9) to be associated with a locus affecting SCS within the families investigated. A further analysis of maternally inherited two-marker haplotypes and effects of maternally inherited two-marker-interval gametes indicated haplotype 249-G in marker interval 12-13 (BB710 - PVRL2_c.392G>A) to be associated with SCS in the German Holstein population.

Conclusion

Our results confirmed previous QTL mapping results for SCS and support the hypothesis that more than one locus presumably affects udder health in the middle to telomeric region of BTA18. However, a subsequent investigation of the reported QTL regions is necessary to verify the two-QTL hypothesis and confirm the association of two-marker-haplotype 249-G in marker interval 12-13 (BB710 - PVRL2_c.392G>A) with SCS. For this purpose, higher marker density and multiple-trait and multiple-QTL models are required to narrow down the position of the causal mutation or mutations affecting SCS in German Holstein cattle.