Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Research article

Cooperative social clusters are not destroyed by dispersal in a ciliate

Nicolas Schtickzelle1*, Else J Fjerdingstad2, Alexis Chaine3 and Jean Clobert3

Author Affiliations

1 Biodiversity Research Centre, Université catholique de Louvain, Croix du Sud 4, 1348 Louvain-la-Neuve, Belgium

2 Department of Biology, Queens College, City University of New York, Flushing, NY, USA

3 Station d'Ecologie Expérimentale du CNRS à Moulis USR2936, 09200 Saint-Girons, France

For all author emails, please log on.

BMC Evolutionary Biology 2009, 9:251  doi:10.1186/1471-2148-9-251

Published: 14 October 2009



The evolution of social cooperation is favored by aggregative behavior to facilitate stable social structure and proximity among kin. High dispersal rates reduce group stability and kin cohesion, so it is generally assumed that there is a fundamental trade-off between cooperation and dispersal. However, empirical tests of this relationship are rare. We tested this assumption experimentally using ten genetically isolated strains of a ciliate, Tetrahymena thermophila.


The propensity for social aggregation was greater in strains with reduced cell quality and lower growth performance. While we found a trade-off between costly aggregation and local dispersal in phenotypic analyses, aggregative strains showed a dispersal polymorphism by producing either highly sedentary or long-distance dispersive cells, in contrast to less aggregative strains whose cells were monomorphic local dispersers.


High dispersal among aggregative strains may not destroy group stability in T. thermophila because the dispersal polymorphism allows social strains to more readily escape kin groups than less aggregative strains, yet still benefit from stable group membership among sedentary morphs. Such dispersal polymorphisms should be common in other social organisms, serving to alter the nature of the negative impact of dispersal on social evolution.