Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Open Badges Research article

Rodent-specific alternative exons are more frequent in rapidly evolving genes and in paralogs

Ramil N Nurtdinov1, Andrey A Mironov123 and Mikhail S Gelfand13*

Author Affiliations

1 Departament of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Vorbyevy Gory 1-73, Moscow, 119992, Russia

2 State Research Institute for Genetics and Selection of Industrial Microorganisms "GosNIIGenetika", 1st Dorozhny proezd 1, Moscow, 117545, Russia

3 Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karenty pereulok 19, Moscow, 127994, Russia

For all author emails, please log on.

BMC Evolutionary Biology 2009, 9:142  doi:10.1186/1471-2148-9-142

Published: 26 June 2009



Alternative splicing is an important mechanism for generating functional and evolutionary diversity of proteins in eukaryotes. Here, we studied the frequency and functionality of recently gained, rodent-specific alternative exons.


We projected the data about alternative splicing of mouse genes to the rat, human, and dog genomes, and identified exons conserved in the rat genome, but missing in more distant genomes. We estimated the frequency of rodent-specific exons while controlling for possible residual conservation of spurious exons. The frequency of rodent-specific exons is higher among predominantly skipped exons and exons disrupting the reading frame. Separation of all genes by the rate of sequence evolution and by gene families has demonstrated that rodent-specific cassette exons are more frequent in rapidly evolving genes and in rodent-specific paralogs.


Thus we demonstrated that recently gained exons tend to occur in fast-evolving genes, and their inclusion rate tends to be lower than that of older exons. This agrees with the theory that gain of alternative exons is one of the major mechanisms of gene evolution.