Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Research article

Phylogenetic patterns and conservation among North American members of the genus Agalinis (Orobanchaceae)

James B Pettengill1 and Maile C Neel12*

Author Affiliations

1 Behavior, Ecology, Evolution, and Systematics Graduate Program, University of Maryland College Park, College Park, MD 20742 USA

2 Department of Plant Science and Landscape Architecture and Department of Entomology, University of Maryland College Park, College Park, MD 20742 USA

For all author emails, please log on.

BMC Evolutionary Biology 2008, 8:264  doi:10.1186/1471-2148-8-264

Published: 26 September 2008

Abstract

Background

North American Agalinis Raf. species represent a taxonomically challenging group and there have been extensive historical revisions at the species, section, and subsection levels of classification. The genus contains many rare species, including the federally listed endangered species Agalinis acuta. In addition to evaluating the degree to which historical classifications at the section and subsection levels are supported by molecular data sampled from 79 individuals representing 29 Agalinis species, we assessed the monophyly of 27 species by sampling multiple individuals representing different populations of those species. Twenty-one of these species are of conservation concern in at least some part of their range.

Results

Phylogenetic relationships estimated using maximum likelihood analyses of seven chloroplast DNA loci (aligned length = 11 076 base pairs (bp) and the nuclear ribosomal DNA ITS (internal transcribed spacer) locus (733 bp); indicated no support for the historically recognized sections except for Section Erectae. Our results suggest that North American members of the genus comprise six major lineages, however we were not able to resolve branching order among many of these lineages. Monophyly of 24 of the 29 sampled species was supported based on significant branch lengths of and high bootstrap support for subtending branches. However, there was no statistical support for the monophyly of A. acuta with respect to Agalinis tenella and Agalinis decemloba. Although most species were supported, deeper relationships among many species remain ambiguous.

Conclusion

The North American Agalinis species sampled form a well supported, monophyletic group within the family Orobanchaceae relative to the outgroups sampled. Most hypotheses regarding section- and subsection-level relationships based on morphology were not supported and taxonomic revisions are warranted. Lack of support for monophyly of Agalinis acuta leaves the important question regarding its taxonomic status unanswered. Lack of resolution is potentially due to incomplete lineage sorting of ancestral polymorphisms among recently diverged species; however the gene regions examined did distinguish among almost all other species in the genus. Due to the important policy implications of this finding we are further evaluating the evolutionary distinctiveness of A. acuta using morphological data and loci with higher mutation rates.