Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Research article

Gain and loss of polyadenylation signals during evolution of green algae

Sabina Wodniok1, Andreas Simon1, Gernot Glöckner2 and Burkhard Becker1*

Author Affiliations

1 Botanisches Institut, Universität zu Köln, Gyrhofstr. 15, 50931 Köln, Germany

2 Genome Analysis, FLI, Beutenbergstr. 11, 07745 Jena, Germany

For all author emails, please log on.

BMC Evolutionary Biology 2007, 7:65  doi:10.1186/1471-2148-7-65

Published: 18 April 2007

Abstract

Background

The Viridiplantae (green algae and land plants) consist of two monophyletic lineages: the Chlorophyta and the Streptophyta. Most green algae belong to the Chlorophyta, while the Streptophyta include all land plants and a small group of freshwater algae known as Charophyceae. Eukaryotes attach a poly-A tail to the 3' ends of most nuclear-encoded mRNAs. In embryophytes, animals and fungi, the signal for polyadenylation contains an A-rich sequence (often AAUAAA or related sequence) 13 to 30 nucleotides upstream from the cleavage site, which is commonly referred to as the near upstream element (NUE). However, it has been reported that the pentanucleotide UGUAA is used as polyadenylation signal for some genes in volvocalean algae.

Results

We set out to investigate polyadenylation signal differences between streptophytes and chlorophytes that may have emerged shortly after the evolutionary split between Streptophyta and Chlorophyta. We therefore analyzed expressed genes (ESTs) from three streptophyte algae, Mesostigma viride, Klebsormidium subtile and Coleochaete scutata, and from two early-branching chlorophytes, Pyramimonas parkeae and Scherffelia dubia. In addition, to extend the database, our analyses included ESTs from six other chlorophytes (Acetabularia acetabulum, Chlamydomonas reinhardtii, Helicosporidium sp. ex Simulium jonesii, Prototheca wickerhamii, Scenedesmus obliquus and Ulva linza) and one streptophyte (Closterium peracerosum). Our results indicate that polyadenylation signals in green algae vary widely. The UGUAA motif is confined to late-branching Chlorophyta. Most streptophyte algae do not have an A-rich sequence motif like that in embryophytes, animals and fungi. We observed polyadenylation signals similar to those of Arabidopsis and other land plants only in Mesostigma.

Conclusion

Polyadenylation signals in green algae show considerable variation. A new NUE (UGUAA) was invented in derived chlorophytes and replaced not only the A-rich NUE but the complete poly(A) signal in all chlorophytes investigated except Scherffelia (only NUE replaced) and Pyramimonas (UGUAA completely missing). The UGUAA element is completely absent from streptophytes. However, the structure of the poly(A) signal was often modified in streptophyte algae. In most species investigated, an A-rich NUE is missing; instead, these species seem to rely mainly on U-rich elements.