Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Research article

Phylogenomic analyses of KCNA gene clusters in vertebrates: why do gene clusters stay intact?

Simone Hoegg and Axel Meyer*

Author Affiliations

Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany

For all author emails, please log on.

BMC Evolutionary Biology 2007, 7:139  doi:10.1186/1471-2148-7-139

Published: 15 August 2007

Abstract

Background

Gene clusters are of interest for the understanding of genome evolution since they provide insight in large-scale duplications events as well as patterns of individual gene losses. Vertebrates tend to have multiple copies of gene clusters that typically are only single clusters or are not present at all in genomes of invertebrates. We investigated the genomic architecture and conserved non-coding sequences of vertebrate KCNA gene clusters. KCNA genes encode shaker-related voltage-gated potassium channels and are arranged in two three-gene clusters in tetrapods. Teleost fish are found to possess four clusters. The two tetrapod KNCA clusters are of approximately the same age as the Hox gene clusters that arose through duplications early in vertebrate evolution. For some genes, their conserved retention and arrangement in clusters are thought to be related to regulatory elements in the intergenic regions, which might prevent rearrangements and gene loss. Interestingly, this hypothesis does not appear to apply to the KCNA clusters, as too few conserved putative regulatory elements are retained.

Results

We obtained KCNA coding sequences from basal ray-finned fishes (sturgeon, gar, bowfin) and confirmed that the duplication of these genes is specific to teleosts and therefore consistent with the fish-specific genome duplication (FSGD). Phylogenetic analyses of the genes suggest a basal position of the only intron containing KCNA gene in vertebrates (KCNA7). Sistergroup relationships of KCNA1/2 and KCNA3/6 support that a large-scale duplication gave rise to the two clusters found in the genome of tetrapods. We analyzed the intergenic regions of KCNA clusters in vertebrates and found that there are only a few conserved sequences shared between tetrapods and teleosts or between paralogous clusters. The orthologous teleost clusters, however, show sequence conservation in these regions.

Conclusion

The lack of overall conserved sequences in intergenic regions suggests that there are either other processes than regulatory evolution leading to cluster conservation or that the ancestral regulatory relationships among genes in KCNA clusters have been changed together with their regulatory sites.