Figure 2.

Structural organization of Ce-GnRHR and detection of Ce-GnRHR mRNA. (A). Two-dimensional representation of the Ce-GnRHR showing the conserved, functionally important, amino acid residues. Predictions were made according to SOSUI [65]. Putative ligand binding sites, and residues important in receptor activation, binding pocket formation, G-protein coupling and PKC phosphorylation are indicated in the figure legend. These functionally important residues were derived from the predicted structure of human GnRHR1 by Miller et al. [11]. (B). Comparative genomic organization of human GnRHR1, Ce-GnRHR, and D. melanogaster AKHR (Dm-AKHR). Exons are represented by tall, colored boxes. Exon colors in human GnRHR1 and Dm-AKHR sequences correspond to homologous regions in the Ce-GnRHR sequence. The gray box delimits the C-terminus portion of Ce-GnRHR absent from human GnRHR1, while the red line traces the correspondence between the ends of human GnRHR1 exon 1 and Dm-AKHR exon 3. Arrows superimposed upon Ce-GnRHR represent the locations of the forward and reverse primers used to amplify Ce-GnRHR cDNA. Numbers to the right of Ce-GnRHR exons indicate the mRNA nucleotide upon which the preceding exon terminates. (C). Ce-GnRHR mRNA expression. Gel showing the 946 bp Ce-GnRHR cDNA derived from RT-PCR using the forward and reverse primers shown in (B) above (see details of RNA isolation and RT-PCR in Methods). The DNA ladder is indicated in bp on the left. Alignment of the fragment sequence with C. elegans genomic sequence confirmed the synthesized fragment originated from the Ce-GnRHR mRNA template.

Vadakkadath Meethal et al. BMC Evolutionary Biology 2006 6:103   doi:10.1186/1471-2148-6-103
Download authors' original image