Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Research article

The Sinbad retrotransposon from the genome of the human blood fluke, Schistosoma mansoni, and the distribution of related Pao-like elements

Claudia S Copeland12, Victoria H Mann1, Maria E Morales12, Bernd H Kalinna3 and Paul J Brindley12*

Author Affiliations

1 Department of Tropical Medicine, Tulane University Health Sciences Center, New Orleans, USA

2 Interdisciplinary Program in Molecular and Cellular Biology, Tulane University Health Sciences Center, New Orleans, USA

3 Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin, Berlin, Germany

For all author emails, please log on.

BMC Evolutionary Biology 2005, 5:20  doi:10.1186/1471-2148-5-20

Published: 23 February 2005

Abstract

Background

Of the major families of long terminal repeat (LTR) retrotransposons, the Pao/BEL family is probably the least well studied. It is becoming apparent that numerous LTR retrotransposons and other mobile genetic elements have colonized the genome of the human blood fluke, Schistosoma mansoni.

Results

A proviral form of Sinbad, a new LTR retrotransposon, was identified in the genome of S. mansoni. Phylogenetic analysis indicated that Sinbad belongs to one of five discreet subfamilies of Pao/BEL like elements. BLAST searches of whole genomes and EST databases indicated that members of this clade occurred in species of the Insecta, Nematoda, Echinodermata and Chordata, as well as Platyhelminthes, but were absent from all plants, fungi and lower eukaryotes examined. Among the deuterostomes examined, only aquatic species harbored these types of elements. All four species of nematode examined were positive for Sinbad sequences, although among insect and vertebrate genomes, some were positive and some negative. The full length, consensus Sinbad retrotransposon was 6,287 bp long and was flanked at its 5'- and 3'-ends by identical LTRs of 386 bp. Sinbad displayed a triple Cys-His RNA binding motif characteristic of Gag of Pao/BEL-like elements, followed by the enzymatic domains of protease, reverse transcriptase (RT), RNAseH, and integrase, in that order. A phylogenetic tree of deduced RT sequences from 26 elements revealed that Sinbad was most closely related to an unnamed element from the zebrafish Danio rerio and to Saci-1, also from S. mansoni. It was also closely related to Pao from Bombyx mori and to Ninja of Drosophila simulans. Sinbad was only distantly related to the other schistosome LTR retrotransposons Boudicca, Gulliver, Saci-2, Saci-3, and Fugitive, which are gypsy-like. Southern hybridization and bioinformatics analyses indicated that there were about 50 copies of Sinbad in the S. mansoni genome. The presence of ESTs representing transcripts of Sinbad in numerous developmental stages of S. mansoni along with the identical 5'- and 3'-LTR sequences suggests that Sinbad is an active retrotransposon.

Conclusion

Sinbad is a Pao/BEL type retrotransposon from the genome of S. mansoni. The Pao/BEL group appears to be comprised of at least five discrete subfamilies, which tend to cluster with host species phylogeny. Pao/BEL type elements appear to have colonized only the genomes of the Animalia. The distribution of these elements in the Ecdysozoa, Deuterostomia, and Lophotrochozoa is discontinuous, suggesting horizontal transmission and/or efficient elimination of Pao-like mobile genetic elements from some genomes.