Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Highly Accessed Research article

Genes with a large intronic burden show greater evolutionary conservation on the protein level

Olga Gorlova1, Alexey Fedorov2, Christopher Logothetis3, Christopher Amos1 and Ivan Gorlov14*

Author Affiliations

1 Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon 03766, NH, USA

2 University of Toledo, Toledo 43606, OH, USA

3 Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA

4 Center for Genomic Medicine Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, 46 Centerra Parkway, Suite 330, Lebanon 03766, NH, USA

For all author emails, please log on.

BMC Evolutionary Biology 2014, 14:50  doi:10.1186/1471-2148-14-50

Published: 16 March 2014

Abstract

Background

The existence of introns in eukaryotic genes is believed to provide an evolutionary advantage by increasing protein diversity through exon shuffling and alternative splicing. However, this eukaryotic feature is associated with the necessity of exclusion of intronic sequences, which requires considerable energy expenditure and can lead to splicing errors. The relationship between intronic burden and evolution is poorly understood. The goal of this study was to analyze the relationship between the intronic burden and the level of evolutionary conservation of the gene.

Results

We found a positive correlation between the level of evolutionary conservation of a gene and its intronic burden. The level of evolutionary conservation was estimated using the conservation index (CI). The CI value was determined on the basis of the most distant ortholog of the human protein sequence and ranged from 0 (the gene was unique to the human genome) to 9 (an ortholog of the human gene was detected in plants). In multivariable model, both the number of introns and total intron size remained significant predictors of CI. We also found that the number of alternative splice variants was positively correlated with CI.

The expression level of a gene was negatively correlated with the number of introns and total size of intronic region. Genes with a greater intronic burden had lower density of missense and nonsense mutations in the coding regions of the gene, which suggests that they are under a stronger pressure from purifying selection.

Conclusions

We identified a positive association between intronic burden and CI. One of the possible explanations of this is the idea of a cost-benefits balance. Evolutionarily conserved (functionally important) genes can “afford” the negative consequences of maintaining multiple introns because these consequences are outweighed by the benefit of maintaining the gene. Evolutionarily conserved and functionally important genes may use introns to create novel splice variants to tune the gene function to developmental stage and tissue type.

Keywords:
Exon/intron structure; Intronic burden; Evolutionary conservation