Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Highly Accessed Research article

Testing the inhibitory cascade model in Mesozoic and Cenozoic mammaliaforms

Thomas JD Halliday1* and Anjali Goswami12

Author affiliations

1 Department of Earth Sciences, University College London, Gower Street, London, UK

2 Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK

For all author emails, please log on.

Citation and License

BMC Evolutionary Biology 2013, 13:79  doi:10.1186/1471-2148-13-79

Published: 8 April 2013

Abstract

Background

Much of the current research in the growing field of evolutionary development concerns relating developmental pathways to large-scale patterns of morphological evolution, with developmental constraints on variation, and hence diversity, a field of particular interest. Tooth morphology offers an excellent model system for such ‘evo-devo’ studies, because teeth are well preserved in the fossil record, and are commonly used in phylogenetic analyses and as ecological proxies. Moreover, tooth development is relatively well studied, and has provided several testable hypotheses of developmental influences on macroevolutionary patterns. The recently-described Inhibitory Cascade (IC) Model provides just such a hypothesis for mammalian lower molar evolution. Derived from experimental data, the IC Model suggests that a balance between mesenchymal activators and molar-derived inhibitors determines the size of the immediately posterior molar, predicting firstly that molars either decrease in size along the tooth row, or increase in size, or are all of equal size, and secondly that the second lower molar should occupy one third of lower molar area. Here, we tested the IC Model in a large selection of taxa from diverse extant and fossil mammalian groups, ranging from the Middle Jurassic (~176 to 161 Ma) to the Recent.

Results

Results show that most taxa (~65%) fell within the predicted areas of the Inhibitory Cascade Model. However, members of several extinct groups fell into the regions where m2 was largest, or rarely, smallest, including the majority of the polyphyletic “condylarths”. Most Mesozoic mammals fell near the centre of the space with equality of size in all three molars. The distribution of taxa was significantly clustered by diet and by phylogenetic group.

Conclusions

Overall, the IC Model was supported as a plesiomorphic developmental system for Mammalia, suggesting that mammal tooth size has been subjected to this developmental constraint at least since the divergence of australosphenidans and boreosphenidans approximately 180 Ma. Although exceptions exist, including many ‘condylarths’, these are most likely to be secondarily derived states, rather than alternative ancestral developmental models for Mammalia.

Keywords:
Mammalia; Developmental constraints; Teeth; Fossils