Open Access Highly Accessed Open Badges Research article

Cnidarian phylogenetic relationships as revealed by mitogenomics

Ehsan Kayal12*, Béatrice Roure3, Hervé Philippe3, Allen G Collins4 and Dennis V Lavrov1

Author affiliations

1 Dept. Ecology, Evolution, and Organismal Biology, Iowa State University, 50011, Ames, Iowa, USA

2 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 20013-7012, Washington, DC, USA

3 Dept. Biochimie, Fac. Médecine, Université de Montral, Pavillon Roger-Gaudry, C.P. 6128, Succ. Centre-Ville, H3C 3J7, Montral, QC, Canada

4 National Systematics Laboratory of NOAA’s Fisheries Service, National Museum of Natural History, MRC-153, Smithsonian Institution, PO Box 37012, 20013-7012, Washington, DC, USA

For all author emails, please log on.

Citation and License

BMC Evolutionary Biology 2013, 13:5  doi:10.1186/1471-2148-13-5

Published: 9 January 2013



Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) – cnidarians with a reproductive polyp and the absence of a medusa stage – and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) – cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution.


We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans.


Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum. Mitogenome-based phylogenies, which reject the monophyly of Anthozoa, provide further evidence for the polyp-first hypothesis. By rejecting the traditional Acraspeda and Scyphozoa hypotheses, these analyses suggest that the shared morphological characters in these groups are plesiomorphies, originated in the branch leading to Medusozoa. The expansion of mitogenomic data along with improvements in phylogenetic inference methods and use of additional nuclear markers will further enhance our understanding of the phylogenetic relationships and character evolution within Cnidaria.

Cnidaria; Medusozoa; Acraspeda; Anthozoa; mito-phylogenomics