Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Highly Accessed Research article

Gene flow and population structure in the Mexican blind cavefish complex (Astyanax mexicanus)

Martina Bradic12, Peter Beerli3, Francisco J García-de León4, Sarai Esquivel-Bobadilla4 and Richard L Borowsky2*

  • * Corresponding author: Richard L Borowsky rb4@nyu.edu

Author Affiliations

1 Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, (Av. da República), Oeiras, (2780-157), Portugal

2 Biology Department, New York University, (100 Washington Square East), NYC, 10003, USA

3 Department of Scientific Computing, Florida State University, (150-T Dirac Science Library), Tallahassee, (32306-4120), USA

4 Laboratorio de Genética para la Conservación, Centro de Investigaciones Biologicas del Noroeste La Paz, (Mar Bermejo #195), La Paz, (CP. 23090), Mexico

For all author emails, please log on.

BMC Evolutionary Biology 2012, 12:9  doi:10.1186/1471-2148-12-9

Published: 23 January 2012

Abstract

Background

Cave animals converge evolutionarily on a suite of troglomorphic traits, the best known of which are eyelessness and depigmentation. We studied 11 cave and 10 surface populations of Astyanax mexicanus in order to better understand the evolutionary origins of the cave forms, the basic genetic structuring of both cave and surface populations, and the degree to which present day migration among them affects their genetic divergence.

Results

To assess the genetic structure within populations and the relationships among them we genotyped individuals at 26 microsatellite loci. We found that surface populations are similar to one another, despite their relatively large geographic separation, whereas the cave populations are better differentiated. The cave populations we studied span the full range of the cave forms in three separate geographic regions and have at least five separate evolutionary origins. Cave populations had lower genetic diversity than surface populations, correlated with their smaller effective population sizes, probably the result of food and space limitations. Some of the cave populations receive migrants from the surface and exchange migrants with one another, especially when geographically close. This admixture results in significant heterozygote deficiencies at numerous loci due to Wahlund effects. Cave populations receiving migrants from the surface contain small numbers of individuals that are intermediate in both phenotype and genotype, affirming at least limited gene flow from the surface.

Conclusions

Cave populations of this species are derived from two different surface stocks denoted "old" and "new." The old stock colonized caves at least three times independently while the new stock colonized caves at least twice independently. Thus, the similar cave phenotypes found in these caves are the result of repeated convergences. These phenotypic convergences have occurred in spite of gene flow from surface populations suggesting either strong natural or sexual selection for alleles responsible for the cave phenotype in the cave environment.