Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Highly Accessed Research article

Barcoding success as a function of phylogenetic relatedness in Viburnum, a clade of woody angiosperms

Wendy L Clement* and Michael J Donoghue

Author Affiliations

Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208105, New Haven, CT, 06520, USA

For all author emails, please log on.

BMC Evolutionary Biology 2012, 12:73  doi:10.1186/1471-2148-12-73

Published: 30 May 2012



The chloroplast genes matK and rbcL have been proposed as a “core” DNA barcode for identifying plant species. Published estimates of successful species identification using these loci (70-80%) may be inflated because they may have involved comparisons among distantly related species within target genera. To assess the ability of the proposed two-locus barcode to discriminate closely related species, we carried out a hierarchically structured set of comparisons within Viburnum, a clade of woody angiosperms containing ca. 170 species (some 70 of which are currently used in horticulture). For 112 Viburnum species, we evaluated rbcL + matK, as well as the chloroplast regions rpl32-trnL, trnH-psbA, trnK, and the nuclear ribosomal internal transcribed spacer region (nrITS).


At most, rbcL + matK could discriminate 53% of all Viburnum species, with only 18% of the comparisons having genetic distances >1%. When comparisons were progressively restricted to species within major Viburnum subclades, there was a significant decrease in both the discriminatory power and the genetic distances. trnH-psbA and nrITS show much higher levels of variation and potential discriminatory power, and their use in plant barcoding should be reconsidered. As barcoding has often been used to discriminate species within local areas, we also compared Viburnum species within two regions, Japan and Mexico and Central America. Greater success in discriminating among the Japanese species reflects the deeper evolutionary history of Viburnum in that area, as compared to the recent radiation of a single clade into the mountains of Latin America.


We found very low levels of discrimination among closely related species of Viburnum, and low levels of variation in the proposed barcoding loci may limit success within other clades of long-lived woody plants. Inclusion of the supplementary barcodes trnH-psbA and nrITS increased discrimination rates but were often more effective alone rather than in combination with rbcL + matK. We surmise that the efficacy of barcoding in plants has often been overestimated because of the lack of comparisons among closely related species. Phylogenetic information must be incorporated to properly evaluate relatedness in assessing the utility of barcoding loci.