Table 5

Plasticity accelerates the discovery of a new optimal genotype network

N

c

d

Sample size

Mean t*, control

Mean t*, plast

p-value


8

0.4

0.125

498

164.93

54.45

< 2.2 × 10-16


0.25

498

160.3

52.86

< 2.2 × 10-16


0.5

497

167.58

46.95

< 2.2 × 10-16


0.3

0.125

495

104.92

42.82

< 2.2 × 10-16


0.25

498

103.84

38.03

< 2.2 × 10-16


0.5

498

136.33

40.53

< 2.2 × 10-16


16

0.25

0.125

420

2744.8

2319.81

0.00059


0.25

435

2792.44

2299.51

3.9 × 10-5


0.5

421

2832.02

2173.54

2.2 × 10-7


0.2

0.125

464

2510.68

1700.95

1.4 × 10-11


0.25

468

2483.48

1867.23

1.2 × 10-6


0.5

473

2400.1

1758.22

1.4 × 10-7


20

0.2

0.25

154

3961.17

3303.32

0.006869


The number of generations that a population takes to 'discover' a circuit in a new genotype network is significantly lower when we allow plasticity (t*, plast <t*, control), according to a Wilcoxon signed-rank test.

The value of d is that of the old genotype network. We analyzed 500 pairs of evolving populations for each combination of N, c and d. We discarded population pairs in which any of the populations had not reached the new genotype network by the end of the simulation (t = 104). Thus, our actual sample size was lower than 500 populations. The probability α ofgene-activity perturbation in s0 equaled 0.05 per gene when N = 8, 0.025 when N = 16, and 0.02 when N = 20. Population size M = 1000; μ = 0.5; ωnative = 0.5.

Espinosa-Soto et al. BMC Evolutionary Biology 2011 11:5   doi:10.1186/1471-2148-11-5

Open Data