Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Research article

Comparative phylogenies and host specialization in the alder ectomycorrhizal fungi Alnicola, Alpova and Lactarius (Basidiomycota) in Europe

Juliette Rochet12, Pierre-Arthur Moreau3, Sophie Manzi12 and Monique Gardes12*

Author Affiliations

1 Université de Toulouse, UPS, UMR 5174 EDB (Laboratoire Evolution et Diversité Biologique), 118 route de Narbonne, 31062 Toulouse Cedex 4, France

2 CNRS, UMR 5174 EDB, 31062 Toulouse Cedex 4, France

3 Laboratoire de Botanique, Faculté des Sciences pharmaceutiques et biologiques, Univ Lille Nord de France, 59006 Lille Cedex, France

For all author emails, please log on.

BMC Evolutionary Biology 2011, 11:40  doi:10.1186/1471-2148-11-40

Published: 9 February 2011

Abstract

Background

Mycorrhizal fungi form intimate associations with their host plants that constitute their carbon resource and habitat. Alnus spp. (Betulaceae) are known to host an exceptional species-poor and specialized ectomycorrhizal (ECM) fungal community compared to other tree species, but the host-specificity pattern and its significance in terms of fungal diversification and speciation remain poorly documented. The degree of parallel speciation, host switching, and patterns of biogeography were explored in the historical associations between alders and three ECM taxa of Basidiomycetes: Alnicola (Agaricales), Alpova (Boletales), and Lactarius (Russulales). The aim was to develop an evolutionary framework on host specificity and diversification of Basidiomycetes in this highly specialized plant-fungus symbiosis.

Results

Sporocarps of Alnicola (220), Lactarius (61) and Alpova (29) were collected from stands of the four European alder species (A. alnobetula including the endemic subsp. suaveolens in Corsica, A. cordata, A. glutinosa, A. incana) in Western Europe (mainly in France and Austria), from 1995 to 2009. Specimens were morphologically identified to the species level. From these, 402 sequences of four DNA regions (ITS, rpb2, gpd, and the V9 domain of the mit-SSU rDNA) were successfully obtained and analyzed in addition with 89 sequences available in GenBank and UNITE databases. Phylogenetic analyses were conducted on all sequence data sets (individual and combined) using maximum likelihood reconstruction and Bayesian inference. Fungal phylogenies are compared and discussed in relation to the host, with a focus on species boundaries by associating taxonomic, systematic and molecular information.

Conclusions

Patterns of host specificity and phylogenies of Alnicola and Lactarius suggest coevolution as a basal factor of speciation in relation with the subgeneric diversification of Alnus, possibly due to the very selective pressure of the host. A second element of the historical associations between Alnus and its fungal symbionts is a host-dependent speciation (radiation without host change), here observed in Alnicola and Alpova in relation with Alnus subgen. Alnus. Finally host shifts from Alnus subgen. Alnus to A. alnobetula are found in most lineages of Alnicola (at least four times), Alpova (twice) and Lactarius (once), but they do not represent such a common event as could be expected by geographic proximity of trees from the two subgenera. However, active or very recent host extensions clearly occurred in Corsica, where some fungi usually associated with Alnus glutinosa on mainland Europe locally extend there to A. alnobetula subsp. suaveolens without significant genetic or morphological deviation.