Open Access Highly Accessed Open Badges Research article

Evidence for maintenance of sex determinants but not of sexual stages in red yeasts, a group of early diverged basidiomycetes

Marco A Coelho, Paula Gonçalves and José P Sampaio*

Author affiliations

Centro de Recursos Microbiológicos (CREM), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

For all author emails, please log on.

Citation and License

BMC Evolutionary Biology 2011, 11:249  doi:10.1186/1471-2148-11-249

Published: 31 August 2011



The red yeasts are an early diverged group of basidiomycetes comprising sexual and asexual species. Sexuality is based on two compatible mating types and sexual identity is determined by MAT loci that encode homeodomain transcription factors, peptide pheromones and their receptors. The objective of the present study was to investigate the presence and integrity of MAT genes throughout the phylogenetic diversity of red yeasts belonging to the order Sporidiobolales.


We surveyed 18 sexual heterothallic and self-fertile species and 16 asexual species. Functional pheromone receptor homologues (STE3.A1 and STE3.A2) were found in multiple isolates of most of the sexual and asexual species. For each of the two mating types, sequence comparisons with whole-genome data indicated that synteny tended to be conserved along the pheromone receptor region. For the homeodomain transcription factor, likelihood methods suggested that diversifying selection acting on the self/non-self recognition region promotes diversity in sexual species, while rapid evolution seems to be due to relaxed selection in asexual strains.


The majority of both sexual and asexual species of red yeasts have functional pheromone receptors and homeodomain homologues. This and the frequent existence of asexual strains within sexual species, makes the separation between sexual and asexual species imprecise. Events of loss of sexuality seem to be recent and frequent, but not uniformly distributed within the Sporidiobolales. Loss of sex could promote speciation by fostering the emergence of asexual lineages from an ancestral sexual stock, but does not seem to contribute to the generation of exclusively asexual lineages that persist for a long time.