Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Highly Accessed Research article

The evolution of plasmid-carried antibiotic resistance

Fabian Svara1 and Daniel J Rankin12*

Author Affiliations

1 Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Building Y27, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

2 Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, CH-1015 Lausanne, Switzerland

For all author emails, please log on.

BMC Evolutionary Biology 2011, 11:130  doi:10.1186/1471-2148-11-130

Published: 19 May 2011

Additional files

Additional file 1:

The effect of antibiotic dosage intensity and the interval between treatments on the cell types persisting at equilibrium for the basic model in the absence of segregation (i.e. s = 0). "F" denotes wild-type cells, "P" denotes cells infected with a plasmid carrying resistance and "C" denotes cells with resistance on the chromosome. Plasmid transmission is β = 0.01 (in figure A) and β = 0.1 (in figure B). Cell types that are present in the population at a density greater than exceeding 0.001 are shown. The plots were calculated by running the simulation for a number of parameter values for 5,000 time-steps. Lines were then smoothed by interpolation. Parameters used are r = 1, a = 1, cc = 0.02, cp = 0.02, x = 0.05, m = 0.1, s = 0 and l = 0.5.

Format: PDF Size: 72KB Download file

This file can be viewed with: Adobe Acrobat Reader

Open Data

Additional file 2:

The effect of antibiotic dosage intensity and the interval between treatments on the cell types persisting at equilibrium for the extended model, in the absence of segregation (i.e. s = 0). "F" denotes wild-type cells, "P" denotes cells infected with a plasmid carrying resistance and "C" denotes cells with resistance on the chromosome and "B" denotes cells carrying plasmids that do not code for resistance genes. Plasmid transmission is β = 0.01 (in figure A) and β = 0.1 (in figure B). Cell types that are present in the population at a density greater than exceeding 0.001 are shown. The plots were calculated by running the simulation for a number of parameter values for 5,000 time-steps. Lines were then smoothed by interpolation. Parameters used are r = 1, a = 1, cc = 0.02, cp = 0.02, x = 0.05, m = 0.1, s = 0 and l = 0.5.

Format: PDF Size: 72KB Download file

This file can be viewed with: Adobe Acrobat Reader

Open Data

Additional file 3:

The effect of antibiotic dosage intensity and the interval between treatments on the cell types persisting at equilibrium for the extended model. "F" denotes wild-type cells, "P" denotes cells infected with a plasmid carrying resistance and "C" denotes cells with resistance on the chromosome and "B" denotes cells carrying plasmids that do not code for resistance genes. Plasmid segregation s = 0.01 (in figure A) and s = 0.0001 (in figure B). Cell types that are present in the population at a density greater than exceeding 0.001 are shown. The plots were calculated by running the simulation for a number of parameter values for 5,000 time-steps. Lines were then smoothed by interpolation. Parameters used are r = 1, β = 0.1, a = 1, cc = 0.02, cp = 0.02, x = 0.05, m = 0.1 and l = 0.5.

Format: PDF Size: 99KB Download file

This file can be viewed with: Adobe Acrobat Reader

Open Data

Additional file 4:

The effect of antibiotic dosage intensity and the interval between treatments on the cell types persisting at equilibrium for the extended model. "F" denotes wild-type cells, "P" denotes cells infected with a plasmid carrying resistance and "C" denotes cells with resistance on the chromosome and "B" denotes cells carrying plasmids that do not code for resistance genes. The cost of antibiotic resistance is either cc = 0.04, cp= 0.02 (in figure A) or cc = 0.02, cp = 0.04 (in figure B), in the absence of segregation (i.e. s = 0). Cell types that are present in the population at a density greater than exceeding 0.001 are shown. The plots were calculated by running the simulation for a number of parameter values for 5,000 time-steps. Lines were then smoothed by interpolation. Parameters used are r = 1, β = 0.1, a = 1, x = 0.05, m = 0.1, s = 0 and l = 0.5.

Format: PDF Size: 72KB Download file

This file can be viewed with: Adobe Acrobat Reader

Open Data

Additional file 5:

The effect of antibiotic dosage intensity and the interval between treatments on the cell types persisting at equilibrium for the extended model, in the absence of segregation (i.e. s = 0). In Figures A, C and E the degradation rate of the antibiotic is l = 0.1, while in Figures A, C and E, the degradation rate of the antibiotic is l = 5. In figures A and B the antibiotic induced mortality is m = 0.0001, in figures C and D the antibiotic induced mortality is m = 0.01 and in figures E and F the antibiotic induced mortality is m = 1. "F" denotes wild-type cells, "P" denotes cells infected with a plasmid carrying resistance and "C" denotes cells with resistance on the chromosome and "B" denotes cells carrying plasmids that do not code for resistance genes. Cell types that are present in the population at a density greater than exceeding 0.001 are shown. The plots were calculated by running the simulation for a number of parameter values for 5,000 time-steps. Lines were then smoothed by interpolation. Parameters used are r = 1, a = 1, β = 0.1, cc = 0.02, cp = 0.02, x = 0.05 and s = 0.

Format: PDF Size: 206KB Download file

This file can be viewed with: Adobe Acrobat Reader

Open Data