Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Highly Accessed Research article

Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

Pauline L Kamath1* and Wayne M Getz12

Author Affiliations

1 Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA

2 Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa

For all author emails, please log on.

BMC Evolutionary Biology 2011, 11:128  doi:10.1186/1471-2148-11-128

Published: 18 May 2011

Abstract

Background

Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations.

Results

We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN < dS). However, the most likely evolutionary codon models allowed for variable rates of selection across codon sites at both loci and, at the DQA, supported the hypothesis of positive selection acting on specific sites.

Conclusions

Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the DQA, positive selection was occurring at antigen binding sites, suggesting that a few selected residues may play a significant role in equid immune function. Future studies in natural equid populations will be valuable for understanding the functional significance of the uniquely diverse DRA locus and for elucidating the mechanism maintaining diversity at these MHC loci.