Email updates

Keep up to date with the latest news and content from BMC Evolutionary Biology and BioMed Central.

Open Access Research article

The molecular evolution of PL10 homologs

Ti-Cheng Chang12 and Wan-Sheng Liu12*

Author Affiliations

1 Department of Dairy and Animal Science, The Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA

2 The Integrative Biosciences Program, Bioinformatics and Genomics Option, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA

For all author emails, please log on.

BMC Evolutionary Biology 2010, 10:127  doi:10.1186/1471-2148-10-127

Published: 3 May 2010

Abstract

Background

PL10 homologs exist in a wide range of eukaryotes from yeast, plants to animals. They share a DEAD motif and belong to the DEAD-box polypeptide 3 (DDX3) subfamily with a major role in RNA metabolism. The lineage-specific expression patterns and various genomic structures and locations of PL10 homologs indicate these homologs have an interesting evolutionary history.

Results

Phylogenetic analyses revealed that, in addition to the sex chromosome-linked PL10 homologs, DDX3X and DDX3Y, a single autosomal PL10 putative homologous sequence is present in each genome of the studied non-rodent eutheria. These autosomal homologous sequences originated from the retroposition of DDX3X but were pseudogenized during the evolution. In rodents, besides Ddx3x and Ddx3y, we found not only Pl10 but another autosomal homologous region, both of which also originated from the Ddx3x retroposition. These retropositions occurred after the divergence of eutheria and opossum. In contrast, an additional X putative homologous sequence was detected in primates and originated from the transposition of DDX3Y. The evolution of PL10 homologs was under positive selection and the elevated Ka/Ks ratios were observed in the eutherian lineages for DDX3Y but not PL10 and DDX3X, suggesting relaxed selective constraints on DDX3Y. Contrary to the highly conserved domains, several sites with relaxed selective constraints flanking the domains in the mammalian PL10 homologs may play roles in enhancing the gene function in a lineage-specific manner.

Conclusion

The eutherian DDX3X/DDX3Y in the X/Y-added region originated from the translocation of the ancient PL10 ortholog on the ancestral autosome, whereas the eutherian PL10 was retroposed from DDX3X. In addition to the functional PL10/DDX3X/DDX3Y, conserved homologous regions on the autosomes and X chromosome are present. The autosomal homologs were also derived from DDX3X, whereas the additional X-homologs were derived from DDX3Y. These homologs were apparently pseudogenized but may still be active transcriptionally. The evolution of PL10 homologs was positively selected.