Email updates

Keep up to date with the latest news and content from BMC Developmental Biology and BioMed Central.

Open Access Highly Accessed Research article

The zebrafish heart regenerates after cryoinjury-induced myocardial infarction

Fabian Chablais13, Julia Veit2, Gregor Rainer2 and Anna Jaźwińska13*

Author Affiliations

1 Department of Medicine, Unit of Anatomy, University of Fribourg, Fribourg, Switzerland

2 Department of Medicine, Unit of Physiology, University of Fribourg, Fribourg, Switzerland

3 Department of Biology, Unit of Zoology, University of Fribourg, Fribourg, Switzerland

For all author emails, please log on.

BMC Developmental Biology 2011, 11:21  doi:10.1186/1471-213X-11-21

Published: 7 April 2011

Additional files

Additional file 1:

Three-dimensional-reconstruction of the zebrafish heart from a consecutive series of AFOG-stained sections at 7 dpci. Several anatomical structures can be seen: the atrium (spongy appearance, light orange), the ventricle (dense muscle tissue, intense orange), the bulbus arteriosus with abundent collagen (dark blue), the atrioventricular valve (green) and the outflow tract between the ventricle and the bulbus arteriosus (green). The post-infarct zone extends from the apex of ventricle to the half-length of the ventricle wall. The outer border of the injured area is surrounded by fibrin (red), and fibrotic tissue. The middle part of the injured area contains a loose collagen network (light blue/green).

Format: MOV Size: 3.7MB Download file

Playing the movie within this page requires QuickTime and JavaScript. Read more

Open Data

Additional file 2:

H&E histological analysis of the scar and of the inflammatory response. (A-C) Heart cross-sections stained with Hematoxylin (dark purple) to visualize nuclei and Eosin (pink) to detect proteins. (A', B' and C') Higher magnifications of framed area shown in left panels. (A-A') At 4 dps, the intact ventricle is surrounded by the compact myocardium. The middle part of the ventricle consists of trabecular myocardium. (B-B') At 7 dpci, the scar tissue (dashed line) is infiltrated by inflammatory cells. A network of fibroblasts surrounds the outer border of the infarct. A layer of acellular matrix accumulates at the inner side of this border. (C-C') At 14 dpci, the compact myocardium starts to invade the outer margin of the scar. The interior of the post-infarct is composed of a network of spindle-shaped fibroblasts, which is infiltrated by blood cells. cm, compact myocardium; tm, trabecular myocardium, bc, blood cells; f, fibrin; wm, wound margin; fn, fibroblast network in the interior of the scar. Scale bars in (A-A') represent 300 μm.

Format: PDF Size: 1.9MB Download file

This file can be viewed with: Adobe Acrobat Reader

Open Data

Additional file 3:

A new myocardium surrounds the post-infarct area during heart regeneration. (A and E) AFOG staining of a consecutive series of transverse sections of a heart at 14 dpci (A) and at 30 dpci (E) from the top of the ventricle (left upper corner) to the ventricular apex (right bottom corner); v, ventricle; va, valve; ba, bulbus arteriosus; a, atrium. (B-D) Higher magnification of selected images shown in (A). The post-infarct zone (dashed line) containing fibrin (red) and collagen (blue) expands from the apex to approximately a half-length of the ventricular wall. New cardiac tissue (orange) begins to surround the post-infarct (arrows). (F-H) Higher magnification of selected images shown in (E). The post-infarct zone (dashed line) is detected only at the level of the artioventricular valves (F), and it is completely replaced by a new myocardium in the apex and the lower part of the ventricle (G and H). (F) A wall of cardiac tissue surrounds the remaining collagenous scar (arrows).

Format: PDF Size: 1.9MB Download file

This file can be viewed with: Adobe Acrobat Reader

Open Data

Additional file 4:

Sham surgery triggers a cell-cycle entry of the cardiomyocytes in the vicinity the epicardium. (A-B) The nuclei of cardiomyocytes express DsRed2-Nuc protein under the control of cmlc-2 promoter. Tropomyosin (blue) labels the myocardium, MCM5 (green) is expressed in the mitotic cells, DAPI marks all the nuclei. Proliferating cardiomyocytes are identified by the co-expression of DsRed2-Nuc and MCM5 (circles). (A' and B') Higher magnifications of framed area shown in left panels. (A-A') Uninjured animals display a very few proliferating cardiomyocytes in the ventricle. (B-B') The ventricle of animals at 4 days sham-operation contains an enhanced number of DsRed2-Nuc/MCM5-positive nuclei at the myocardial periphery, underneath the epicardium. Bars in (A-A') represent 300 μm.

Format: PDF Size: 1.9MB Download file

This file can be viewed with: Adobe Acrobat Reader

Open Data

Additional file 5:

Distribution of the endothelial cells in the ventricle at 14 dpci. (A) The endothelial cells express GFP under the control of tie-2 promoter [45]. Tropomyosin (blue) labels the myocardium, TNC (red) is expressed in the post-infarct zone. (A') Higher magnification of the framed area in (A) demonstrates formation of new blood vessels in the post-infarct area. Tenascin-C outlines the boundary between the invading myocardium and the injury site. Scale bar in (A) represents 300 μm.

Format: PDF Size: 2.2MB Download file

This file can be viewed with: Adobe Acrobat Reader

Open Data

Additional file 6:

Fibroblasts with contractile filaments constitute the wall of the post-infarct. (A) Heart section immunostained for a cardiac marker Tropomyosin (red), a myofibroblast marker alpha smooth muscle actin (green) and DAPI (blue). The outer rim of the post-infarct is surrounded by myofibroblasts. (A') Higher magnification of the framed area in (A) reveals fibroblast-cardiomyocyte coupling at the edge of the invading myocardium (arrowheads). Scale bar in (A) represents 300 μm.

Format: PDF Size: 1.9MB Download file

This file can be viewed with: Adobe Acrobat Reader

Open Data