Email updates

Keep up to date with the latest news and content from BMC Cell Biology and BioMed Central.

This article is part of the supplement: 2006 International Workshop on Multiscale Biological Imaging, Data Mining and Informatics

Open Access Research

Surface similarity-based molecular query-retrieval

Rahul Singh

Author affiliations

Department of Computer Science, San Francisco State University, San Francisco, CA 94132, USA

Citation and License

BMC Cell Biology 2007, 8(Suppl 1):S6  doi:10.1186/1471-2121-8-S1-S6

Published: 10 July 2007

Abstract

Background

Discerning the similarity between molecules is a challenging problem in drug discovery as well as in molecular biology. The importance of this problem is due to the fact that the biochemical characteristics of a molecule are closely related to its structure. Therefore molecular similarity is a key notion in investigations targeting exploration of molecular structural space, query-retrieval in molecular databases, and structure-activity modelling. Determining molecular similarity is related to the choice of molecular representation. Currently, representations with high descriptive power and physical relevance like 3D surface-based descriptors are available. Information from such representations is both surface-based and volumetric. However, most techniques for determining molecular similarity tend to focus on idealized 2D graph-based descriptors due to the complexity that accompanies reasoning with more elaborate representations.

Results

This paper addresses the problem of determining similarity when molecules are described using complex surface-based representations. It proposes an intrinsic, spherical representation that systematically maps points on a molecular surface to points on a standard coordinate system (a sphere). Molecular surface properties such as shape, field strengths, and effects due to field super-positioningcan then be captured as distributions on the surface of the sphere. Surface-based molecular similarity is subsequently determined by computing the similarity of the surface-property distributions using a novel formulation of histogram-intersection. The similarity formulation is not only sensitive to the 3D distribution of the surface properties, but is also highly efficient to compute.

Conclusion

The proposed method obviates the computationally expensive step of molecular pose-optimisation, can incorporate conformational variations, and facilitates highly efficient determination of similarity by directly comparing molecular surfaces and surface-based properties. Retrieval performance, applications in structure-activity modeling of complex biological properties, and comparisons with existing research and commercial methods demonstrate the validity and effectiveness of the approach.