Figure 2.

Functional assays.A. The population of transformed tubular structures correlates increasingly with the age of the animal. B. Production of straw cells in postmortem tissues.C. Effect of UV-C radiation on regular and transformed cells. A lethal UV-C dose to normal (vegetative) cells appears not to impair the revival of straw cells. D. Effect of UV-C radiation on post mortem tissues. Lethal doses of UV-C radiation do not affect the production of straw cells from post mortem tissues.E. First, freshly dehydrated CACO-2 cells with filamentous network on the bottom of a 4-channel Lab-Tek® chamber; second, partial rehydration of tubular network with application of 1 μL water. Water rapidly moves through the network in straw cells with 1 μm diameter. Arrow points to the waterfront; third, co-dehydration of THP-1 and CACO-2 cells, filaments from THP-1 and CACO-2 are connected (arrow). F. Actin, nucleic acid and antibody staining of transformed CACO-2 cells. Top, normal CACO-2 cells after incubation in aqueous medium stained for actin (red) and nucleic acids (green). Initial formation of filamentous structures from cells after brief dehydration at 4 h resulted in 50% water loss (middle graph). scale bar = 10 μm. Antibody staining with rabbit anti-tube polyclonal IgG on collapsed filaments in culture and on water-soluble polysaccharides in urine (middle graph). G. Revival (%) of tubular structure to regular sphere shaped cells over 30 days. Straw cells remain with the supernatant at centrifugation force 16,000 g, and are thus separated from un-transformed cells; when re-plated in a fresh well, most regular spherical cells emerge and attach to the supporting matrix in 5 to 15 days. H. Purified filaments displayed on glass slide are from 1 to 4 cm in length and remain connected to each other. I. Fluorescent images of fixed straw cells with filamentous extensions.

Wu et al. BMC Cell Biology 2007 8:36   doi:10.1186/1471-2121-8-36
Download authors' original image