Open Access Highly Accessed Open Badges Research article

Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT

Catalina Machuca14, Criselda Mendoza-Milla2, Emilio Córdova34, Salvador Mejía4, Luis Covarrubias5, José Ventura3 and Alejandro Zentella34*

Author Affiliations

1 Carrera de Biología, Facultad de Estudios Superiores ZARAGOZA, UNAM. C.P. 09230, México D.F., México

2 Instituto Nacional de Enfermedades Respiratorias, Secretaría de Salud, C.P. 14000, México D.F., México

3 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM. C.P. 04510, México D.F., México

4 Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Secretaría de Salud, C.P. 14000, México, D.F., México

5 Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM. C.P. 62210, Cuernavaca Mor. México

For all author emails, please log on.

BMC Cell Biology 2006, 7:9  doi:10.1186/1471-2121-7-9

Published: 21 February 2006



The biochemical bases for hormone dependence in breast cancer have been recognized as an important element in tumor resistance, proliferation and metastasis. On this respect, dexamethasone (Dex) dependent protection against TNF-alpha-mediated cell death in the MCF-7 cell line has been demonstrated to be a useful model for the study of this type of cancer. Recently, cytoplasmic signaling induced by steroid receptors has been described, such as the activation of the PI3K/Akt and NF-kappaB pathways. We evaluated their possible participation in the Dex-dependent protection against TNF-alpha-mediated cell death.


Cellular cultures of the MCF-7 cell line were exposed to either, TNF-alpha or TNF-alpha and Dex, and cell viability was evaluated. Next, negative dominants of PI3K and IkappaB-alpha, designed to block the PI3K/Akt and NF-kappaB pathways, respectively, were transfected and selection and evaluation of several clones overexpressing the mutants were examined. Also, correlation with inhibitor of apoptosis proteins (IAPs) expression was examined. Independent inhibition of these two pathways allowed us to test their participation in Dex-dependent protection against TNF-alpha-cytotoxicity in MCF-7 cells. Expression of the PI3K dominant negative mutant did not alter the protection conferred by Dex against TNF-alpha mediated cell death. Contrariwise, clones expressing the IkappaB-alpha dominant negative mutant lost the Dex-conferred protection against TNF-alpha. In these clones degradation of c-IAP was accelerated, while that of XIAP was remained unaffected.


NF-kappaB, but not PI3K/Akt activation, is required for the Dex protective effect against TNF-alpha-mediated cell death, and correlates with lack of degradation of the anti-apoptotic protein c-IAP1.