Email updates

Keep up to date with the latest news and content from BMC Cell Biology and BioMed Central.

Open Access Highly Accessed Research article

A novel peptide (GX1) homing to gastric cancer vasculature inhibits angiogenesis and cooperates with TNF alpha in anti-tumor therapy

Bei Chen1, Shanshan Cao1, Yingqi Zhang2, Xin Wang1, Jie Liu1, Xiaoli Hui1, Yi Wan2, Wenqi Du1, Li Wang1, Kaichun Wu1* and Daiming Fan1

Author Affiliations

1 State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, Xi'an, Shaanxi, PR China

2 State Key Laboratory of Cancer Biology and Biotechnology Centre, the Fourth Military Medical University, Xi'an, Shaanxi, PR China

For all author emails, please log on.

BMC Cell Biology 2009, 10:63  doi:10.1186/1471-2121-10-63

Published: 9 September 2009

Abstract

Background

The discovery of the importance of angiogenesis in tumor growth has emphasized the need to find specific vascular targets for tumor-targeted therapies. Previously, using phage display technology, we identified the peptide GX1 as having the ability to target the gastric cancer vasculature. The present study investigated the bioactivities of GX1, as well as its potential ability to cooperate with recombinant mutant human tumor necrosis factor alpha (rmhTNFα), in gastric cancer therapy.

Results

Tetrazolium salt (MTT) assay showed that GX1 could inhibit cell proliferation of both human umbilical vein endothelial cells (HUVEC) (44%) and HUVEC with tumor endothelium characteristics, generated by culturing in tumor-conditioned medium (co-HUVEC) (62%). Flow-cytometry (FCM) and western blot assays showed that GX1 increased the rate of apoptosis from 11% to 31% (p < 0.01) by up-regulating caspase 3 expression level. A chorioallantoic membrane assay indicated that GX1 could suppress neovascularization in vivo, with the microvessel count decreasing from 21 to 11 (p < 0.05). When GX1 was fused to rmhTNFα, GX1-rmhTNFα selectively concentrated in the gastric cancer vasculature, as shown by enzyme-linked immunosorbent assay, immunofluorescence and emission-computed tomography. In vitro MTT and FCM assays showed that, compared to rmhTNFα alone, GX1-rmhTNFα was more effective at suppressing co-HUVEC proliferation (45% vs. 61%, p < 0.05) and inducing apoptosis (11% vs. 23%, p < 0.05). In a tumor formation test, GX1-rmhTNFα more effectively inhibited tumor growth than rmhTNFα (tumor volume: 271 mm3 vs. 134 mm3, p < 0.05), with less systemic toxicity as measured by body weight (20.57 g vs. 19.30 g, p < 0.05). These therapeutic effects may be mediated by selectively enhanced tumor vascular permeability, as indicated by Evan's blue assay.

Conclusion

GX1 had both homing activity and the ability to inhibit vascular endothelial cell proliferation in vitro and neovascularization in vivo. Furthermore, when GX1 was conjugated to rmhTNFα, the fusion protein was selectively delivered to targeted tumor sites, significantly improving the anti-tumor activity of rmhTNFα and decreasing systemic toxicity. These results demonstrate the potential of GX1 as a homing peptide in vascular targeted therapy for gastric cancer.