Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

Open Access Open Badges Research article

Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations

Jonathan G Lees12 and Robert W Janes1*

Author Affiliations

1 School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK

2 Department of Biochemistry and Molecular Biology, University College London, University of London, London, WC1E 6BT, UK

For all author emails, please log on.

BMC Bioinformatics 2008, 9:24  doi:10.1186/1471-2105-9-24

Published: 15 January 2008



A number of sequence-based methods exist for protein secondary structure prediction. Protein secondary structures can also be determined experimentally from circular dichroism, and infrared spectroscopic data using empirical analysis methods. It has been proposed that comparable accuracy can be obtained from sequence-based predictions as from these biophysical measurements. Here we have examined the secondary structure determination accuracies of sequence prediction methods with the empirically determined values from the spectroscopic data on datasets of proteins for which both crystal structures and spectroscopic data are available.


In this study we show that the sequence prediction methods have accuracies nearly comparable to those of spectroscopic methods. However, we also demonstrate that combining the spectroscopic and sequences techniques produces significant overall improvements in secondary structure determinations. In addition, combining the extra information content available from synchrotron radiation circular dichroism data with sequence methods also shows improvements.


Combining sequence prediction with experimentally determined spectroscopic methods for protein secondary structure content significantly enhances the accuracy of the overall results obtained.