Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

Open Access Highly Accessed Methodology article

Bias in random forest variable importance measures: Illustrations, sources and a solution

Carolin Strobl1*, Anne-Laure Boulesteix2, Achim Zeileis3 and Torsten Hothorn4

Author Affiliations

1 Institut für Statistik, Ludwig-Maximilians-Universität München, Ludwigstr. 33, 80539 München, Germany

2 Institut für medizinische Statistik und Epidemiologie, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany

3 Department für Statistik und Mathematik, Wirtschaftsuniversität Wien, Augasse 2-6, 1090 Wien, Austria

4 Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universtität Erlangen-Nürnberg, Waldstr. 6, D-91054 Erlangen, Germany

For all author emails, please log on.

BMC Bioinformatics 2007, 8:25  doi:10.1186/1471-2105-8-25

Published: 25 January 2007

Additional files

Additional File 1:

R source code. The exemplary R source code includes all function calls and comments on all important options of the randomForest and cforest functions, that were used in the simulation studies and the application to C-to-U conversion data. Please install the latest versions of the packages randomForest and party before use.

Format: R Size: 8KB Download file

Open Data