Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

This article is part of the supplement: Symposium of Computations in Bioinformatics and Bioscience (SCBB06)

Open Access Research

Towards a better solution to the shortest common supersequence problem: the deposition and reduction algorithm

Kang Ning and Hon Wai Leong*

Author Affiliations

Department of Computer Science, National University of Singapore, Science Drive, Singapore 117543, Singapore

For all author emails, please log on.

BMC Bioinformatics 2006, 7(Suppl 4):S12  doi:10.1186/1471-2105-7-S4-S12

Published: 12 December 2006

Abstract

Background

The problem of finding a Shortest Common Supersequence (SCS) of a set of sequences is an important problem with applications in many areas. It is a key problem in biological sequences analysis. The SCS problem is well-known to be NP-complete. Many heuristic algorithms have been proposed. Some heuristics work well on a few long sequences (as in sequence comparison applications); others work well on many short sequences (as in oligo-array synthesis). Unfortunately, most do not work well on large SCS instances where there are many, long sequences.

Results

In this paper, we present a Deposition and Reduction (DR) algorithm for solving large SCS instances of biological sequences. There are two processes in our DR algorithm: deposition process, and reduction process. The deposition process is responsible for generating a small set of common supersequences; and the reduction process shortens these common supersequences by removing some characters while preserving the common supersequence property. Our evaluation on simulated data and real DNA and protein sequences show that our algorithm consistently produces the best results compared to many well-known heuristic algorithms, and especially on large instances.

Conclusion

Our DR algorithm provides a partial answer to the open problem of designing efficient heuristic algorithm for SCS problem on many long sequences. Our algorithm has a bounded approximation ratio. The algorithm is efficient, both in running time and space complexity and our evaluation shows that it is practical even for SCS problems on many long sequences.