Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

Open Access Research article

Better prediction of protein contact number using a support vector regression analysis of amino acid sequence

Zheng Yuan

Author Affiliations

Institute for Molecular Bioscience and ARC Centre in Bioinformatics, The University of Queensland, St. Lucia, 4072, Australia

BMC Bioinformatics 2005, 6:248  doi:10.1186/1471-2105-6-248

Published: 13 October 2005



Protein tertiary structure can be partly characterized via each amino acid's contact number measuring how residues are spatially arranged. The contact number of a residue in a folded protein is a measure of its exposure to the local environment, and is defined as the number of Cβ atoms in other residues within a sphere around the Cβ atom of the residue of interest. Contact number is partly conserved between protein folds and thus is useful for protein fold and structure prediction. In turn, each residue's contact number can be partially predicted from primary amino acid sequence, assisting tertiary fold analysis from sequence data. In this study, we provide a more accurate contact number prediction method from protein primary sequence.


We predict contact number from protein sequence using a novel support vector regression algorithm. Using protein local sequences with multiple sequence alignments (PSI-BLAST profiles), we demonstrate a correlation coefficient between predicted and observed contact numbers of 0.70, which outperforms previously achieved accuracies. Including additional information about sequence weight and amino acid composition further improves prediction accuracies significantly with the correlation coefficient reaching 0.73. If residues are classified as being either "contacted" or "non-contacted", the prediction accuracies are all greater than 77%, regardless of the choice of classification thresholds.


The successful application of support vector regression to the prediction of protein contact number reported here, together with previous applications of this approach to the prediction of protein accessible surface area and B-factor profile, suggests that a support vector regression approach may be very useful for determining the structure-function relation between primary protein sequence and higher order consecutive protein structural and functional properties.