Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

Open Access Methodology article

A hybrid clustering approach to recognition of protein families in 114 microbial genomes

Timothy J Harlow12, J Peter Gogarten34 and Mark A Ragan124*

Author Affiliations

1 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia

2 Australian Research Council (ARC) Centre in Bioinformatics, Australia

3 Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3044 USA

4 Canadian Institute for Advanced Research, Program in Evolutionary Biology, Canada

For all author emails, please log on.

BMC Bioinformatics 2004, 5:45  doi:10.1186/1471-2105-5-45

Published: 29 April 2004

Abstract

Background

Grouping proteins into sequence-based clusters is a fundamental step in many bioinformatic analyses (e.g., homology-based prediction of structure or function). Standard clustering methods such as single-linkage clustering capture a history of cluster topologies as a function of threshold, but in practice their usefulness is limited because unrelated sequences join clusters before biologically meaningful families are fully constituted, e.g. as the result of matches to so-called promiscuous domains. Use of the Markov Cluster algorithm avoids this non-specificity, but does not preserve topological or threshold information about protein families.

Results

We describe a hybrid approach to sequence-based clustering of proteins that combines the advantages of standard and Markov clustering. We have implemented this hybrid approach over a relational database environment, and describe its application to clustering a large subset of PDB, and to 328577 proteins from 114 fully sequenced microbial genomes. To demonstrate utility with difficult problems, we show that hybrid clustering allows us to constitute the paralogous family of ATP synthase F1 rotary motor subunits into a single, biologically interpretable hierarchical grouping that was not accessible using either single-linkage or Markov clustering alone. We describe validation of this method by hybrid clustering of PDB and mapping SCOP families and domains onto the resulting clusters.

Conclusion

Hybrid (Markov followed by single-linkage) clustering combines the advantages of the Markov Cluster algorithm (avoidance of non-specific clusters resulting from matches to promiscuous domains) and single-linkage clustering (preservation of topological information as a function of threshold). Within the individual Markov clusters, single-linkage clustering is a more-precise instrument, discerning sub-clusters of biological relevance. Our hybrid approach thus provides a computationally efficient approach to the automated recognition of protein families for phylogenomic analysis.