Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

This article is part of the supplement: Proceedings of the Tenth Annual MCBIOS Conference

Open Access Proceedings

BinAligner: a heuristic method to align biological networks

Jialiang Yang1, Jun Li2, Stefan Grünewald2* and Xiu-Feng Wan1*

Author Affiliations

1 Systems Biology Laboratory, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA

2 CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China

For all author emails, please log on.

BMC Bioinformatics 2013, 14(Suppl 14):S8  doi:10.1186/1471-2105-14-S14-S8

Published: 9 October 2013


The advances in high throughput omics technologies have made it possible to characterize molecular interactions within and across various species. Alignments and comparison of molecular networks across species will help detect orthologs and conserved functional modules and provide insights on the evolutionary relationships of the compared species. However, such analyses are not trivial due to the complexity of network and high computational cost. Here we develop a mixture of global and local algorithm, BinAligner, for network alignments. Based on the hypotheses that the similarity between two vertices across networks would be context dependent and that the information from the edges and the structures of subnetworks can be more informative than vertices alone, two scoring schema, 1-neighborhood subnetwork and graphlet, were introduced to derive the scoring matrices between networks, besides the commonly used scoring scheme from vertices. Then the alignment problem is formulated as an assignment problem, which is solved by the combinatorial optimization algorithm, such as the Hungarian method. The proposed algorithm was applied and validated in aligning the protein-protein interaction network of Kaposi's sarcoma associated herpesvirus (KSHV) and that of varicella zoster virus (VZV). Interestingly, we identified several putative functional orthologous proteins with similar functions but very low sequence similarity between the two viruses. For example, KSHV open reading frame 56 (ORF56) and VZV ORF55 are helicase-primase subunits with sequence identity 14.6%, and KSHV ORF75 and VZV ORF44 are tegument proteins with sequence identity 15.3%. These functional pairs can not be identified if one restricts the alignment into orthologous protein pairs. In addition, BinAligner identified a conserved pathway between two viruses, which consists of 7 orthologous protein pairs and these proteins are connected by conserved links. This pathway might be crucial for virus packing and infection.