Open Access Research article

A flood-based information flow analysis and network minimization method for gene regulatory networks

Andreas Pavlogiannis1, Vadim Mozhayskiy12 and Ilias Tagkopoulos12*

Author Affiliations

1 Department of Computer Science, University of California Davis, One Shields Avenue, Davis, CA 95616, USA

2 UC Davis Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA

For all author emails, please log on.

BMC Bioinformatics 2013, 14:137  doi:10.1186/1471-2105-14-137

Published: 24 April 2013

Abstract

Background

Biological networks tend to have high interconnectivity, complex topologies and multiple types of interactions. This renders difficult the identification of sub-networks that are involved in condition- specific responses. In addition, we generally lack scalable methods that can reveal the information flow in gene regulatory and biochemical pathways. Doing so will help us to identify key participants and paths under specific environmental and cellular context.

Results

This paper introduces the theory of network flooding, which aims to address the problem of network minimization and regulatory information flow in gene regulatory networks. Given a regulatory biological network, a set of source (input) nodes and optionally a set of sink (output) nodes, our task is to find (a) the minimal sub-network that encodes the regulatory program involving all input and output nodes and (b) the information flow from the source to the sink nodes of the network. Here, we describe a novel, scalable, network traversal algorithm and we assess its potential to achieve significant network size reduction in both synthetic and E. coli networks. Scalability and sensitivity analysis show that the proposed method scales well with the size of the network, and is robust to noise and missing data.

Conclusions

The method of network flooding proves to be a useful, practical approach towards information flow analysis in gene regulatory networks. Further extension of the proposed theory has the potential to lead in a unifying framework for the simultaneous network minimization and information flow analysis across various “omics” levels.

Keywords:
Network flood; Network flux; Information flow; Gene regulatory networks; Network minimization