Figure 7.

Representing conjunctions with cycles. (a) Three cycles representing the literals <a onClick="popup('http://www.biomedcentral.com/1471-2105/13/S19/S9/mathml/M198','MathML',630,470);return false;" target="_blank" href="http://www.biomedcentral.com/1471-2105/13/S19/S9/mathml/M198">View MathML</a>, <a onClick="popup('http://www.biomedcentral.com/1471-2105/13/S19/S9/mathml/M199','MathML',630,470);return false;" target="_blank" href="http://www.biomedcentral.com/1471-2105/13/S19/S9/mathml/M199">View MathML</a>, and z, and the conjunction edges (bold) for a conjunction <a onClick="popup('http://www.biomedcentral.com/1471-2105/13/S19/S9/mathml/M200','MathML',630,470);return false;" target="_blank" href="http://www.biomedcentral.com/1471-2105/13/S19/S9/mathml/M200">View MathML</a>. (b) For x = y = false and z = true we obtain the conjunction-cycle Δ of length 6. (c) Any other assignment (e.g., x = true) destroys the conjunction cycle.

Mahmoody et al. BMC Bioinformatics 2012 13(Suppl 19):S9   doi:10.1186/1471-2105-13-S19-S9